Ind-Varieties of Generalized Flags: A Survey of Results
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Seminar on algebra and geometry of the Samara University, Tome 147 (2018), pp. 3-50

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a review of results on the structure of the homogeneous ind-varieties $G/P$ of the ind-groups $G=GL_{\infty}(\mathbb{C})$, $SL_{\infty}(\mathbb{C})$, $SO_{\infty}(\mathbb{C})$, and $Sp_{\infty}(\mathbb{C})$, subject to the condition that $G/P$ is the inductive limit of compact homogeneous spaces $G_n/P_n$. In this case, the subgroup $P\subset G$ is a splitting parabolic subgroup of $G$ and the ind-variety $G/P$ admits a “flag realization.” Instead of ordinary flags, one considers generalized flags that are, in general, infinite chains $\mathcal{C}$ of subspaces in the natural representation $V$ of $G$ satisfying a certain condition; roughly speaking, for each nonzero vector $v$ of $V$, there exist the largest space in $\mathcal{C}$, which does not contain $v$, and the smallest space in $\mathcal{C}$ which contains $v$. We start with a review of the construction of ind-varieties of generalized flags and then show that these ind-varieties are homogeneous ind-spaces of the form $G/P$ for splitting parabolic ind-subgroups $P\subset G$. Also, we briefly review the characterization of more general, i.e., nonsplitting, parabolic ind-subgroups in terms of generalized flags. In the special case of the ind-grassmannian $X$, we give a purely algebraic-geometric construction of $X$. Further topics discussed are the Bott–Borel–Weil theorem for ind-varieties of generalized flags, finite-rank vector bundles on ind-varieties of generalized flags, the theory of Schubert decomposition of $G/P$ for arbitrary splitting parabolic ind-subgroups $P\subset G$, as well as the orbits of real forms on $G/P$ for $G=SL_{\infty}(\mathbb{C})$.
Keywords: ind-variety, ind-group, generalized flag, real form.
Mots-clés : Schubert decomposition
@article{INTO_2018_147_a0,
     author = {M. V. Ignatyev and I. Penkov},
     title = {Ind-Varieties of {Generalized} {Flags:} {A} {Survey} of {Results}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--50},
     publisher = {mathdoc},
     volume = {147},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_147_a0/}
}
TY  - JOUR
AU  - M. V. Ignatyev
AU  - I. Penkov
TI  - Ind-Varieties of Generalized Flags: A Survey of Results
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 3
EP  - 50
VL  - 147
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_147_a0/
LA  - ru
ID  - INTO_2018_147_a0
ER  - 
%0 Journal Article
%A M. V. Ignatyev
%A I. Penkov
%T Ind-Varieties of Generalized Flags: A Survey of Results
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 3-50
%V 147
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_147_a0/
%G ru
%F INTO_2018_147_a0
M. V. Ignatyev; I. Penkov. Ind-Varieties of Generalized Flags: A Survey of Results. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Seminar on algebra and geometry of the Samara University, Tome 147 (2018), pp. 3-50. http://geodesic.mathdoc.fr/item/INTO_2018_147_a0/