On Almost Complex Structures on Six-Dimensional Products of Spheres
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Tome 146 (2018), pp. 17-47
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we discuss almost complex structures on the sphere $S^6$ and on the products of spheres $S^3\times S^3$, $S^1\times S^5$, and $S^2\times S^4$. We prove that all almost complex Cayley structures that naturally appear from their embeddings into the Cayley octave algebra $\mathbb{C}\mathrm{a}$ are nonintegrable. We obtain expressions for the Nijenhuis tensor and the fundamental form $\omega$ for each gauge of the space $\mathbb{C}\mathrm{a}$ and prove the nondegeneracy of the form $d\omega$. We show that through each point of a fiber of the twistor bundle over $S^6$, a one-parameter family of Cayley structures passes. We describe the set of $U(2)\times U(2)$-invariant Hermitian metrics on $S^3\times S^3$ and find estimates of the sectional sectional curvature. We consider the space of left-invariant, almost complex structures on $S^3\times S^3=SU(2)\times SU(2)$ and prove the properties of left-invariant structures that yield the maximal value of the norm of the Nijenhuis tensor on the set of left-invariant, orthogonal, almost complex structures.
Keywords:
product of spheres, complex structure, almost complex Cayley structure, octave algebra.
@article{INTO_2018_146_a1,
author = {N. A. Daurtseva and N. K. Smolentsev},
title = {On {Almost} {Complex} {Structures} on {Six-Dimensional} {Products} of {Spheres}},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {17--47},
publisher = {mathdoc},
volume = {146},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2018_146_a1/}
}
TY - JOUR AU - N. A. Daurtseva AU - N. K. Smolentsev TI - On Almost Complex Structures on Six-Dimensional Products of Spheres JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 17 EP - 47 VL - 146 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_146_a1/ LA - ru ID - INTO_2018_146_a1 ER -
%0 Journal Article %A N. A. Daurtseva %A N. K. Smolentsev %T On Almost Complex Structures on Six-Dimensional Products of Spheres %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 17-47 %V 146 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_146_a1/ %G ru %F INTO_2018_146_a1
N. A. Daurtseva; N. K. Smolentsev. On Almost Complex Structures on Six-Dimensional Products of Spheres. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Tome 146 (2018), pp. 17-47. http://geodesic.mathdoc.fr/item/INTO_2018_146_a1/