Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_146_a1, author = {N. A. Daurtseva and N. K. Smolentsev}, title = {On {Almost} {Complex} {Structures} on {Six-Dimensional} {Products} of {Spheres}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {17--47}, publisher = {mathdoc}, volume = {146}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_146_a1/} }
TY - JOUR AU - N. A. Daurtseva AU - N. K. Smolentsev TI - On Almost Complex Structures on Six-Dimensional Products of Spheres JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 17 EP - 47 VL - 146 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_146_a1/ LA - ru ID - INTO_2018_146_a1 ER -
%0 Journal Article %A N. A. Daurtseva %A N. K. Smolentsev %T On Almost Complex Structures on Six-Dimensional Products of Spheres %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 17-47 %V 146 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_146_a1/ %G ru %F INTO_2018_146_a1
N. A. Daurtseva; N. K. Smolentsev. On Almost Complex Structures on Six-Dimensional Products of Spheres. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Tome 146 (2018), pp. 17-47. http://geodesic.mathdoc.fr/item/INTO_2018_146_a1/
[1] Daurtseva N. A., “Ob integriruemosti pochti kompleksnykh struktur na strogo priblizhenno kelerovom $6$-mnogoobrazii”, Sib. mat. zh., 55:1 (2014), 61–65 | MR | Zbl
[2] Daurtseva N. A., “O mnogoobrazii pochti kompleksnykh struktur”, Mat. zametki, 78:1 (2005), 66–71 | DOI | MR | Zbl
[3] Daurtseva N. A., “O suschestvovanii struktur klassa $G_2$ na strogo priblizhenno kelerovom shestimernom mnogoobrazii”, Vestn. Tomsk. un-ta. Ser. mat. mekh., 2014, no. 6 (32), 19–24
[4] Daurtseva N. A., “$U(n+1)\times U(p+1)$-ermitovy metriki na mnogoobrazii $S^{2n+1}\times S^{2p+1}$”, Mat. zametki, 82:2 (2007), 207–223 | DOI | MR | Zbl
[5] Daurtseva N. A., “Invariantnye kompleksnye struktury na $S^3\times S^3$”, Issledovano v Rossii (elektr. zh.), 81 (2004), 882–887
[6] Daurtseva N. A., “Struktury Keli na $S^6$ kak secheniya tvistornogo rassloeniya”, Vestn. NGU. Ser. mat., mekh., inform., 15:4 (2015), 43–49 | Zbl
[7] Daurtseva N. A., “Funktsional normy tenzora Neienkheisa na mnozhestve levoinvariantnykh pochti kompleksnykh struktur na $SU(2)\times SU(2)$, ortogonalnykh otnositelno metriki Killinga—Kartana”, Vestn. KemGU, 17:1 (2004), 156–158
[8] Daurtseva N. A., Smolentsev N. K., “O prostranstve pochti kompleksnykh struktur na mnogoobrazii”, Vestn. KemGU, 7 (2001), 176–186
[9] Kirichenko V. F., “Pochti kelerovy struktury, indutsirovannye $3$-vektornymi proizvedeniyami na shestimernykh podmnogoobraziyakh algebry Keli”, Vestn. MGU. Ser. mat. mekh., 3 (1973), 70–75
[10] Kirichenko V. F., “Klassifikatsiya kelerovykh struktur, indutsirovannykh $3$-vektornymi proizvedeniyami na shestimernykh podmnogoobraziyakh algebry Keli”, Izv. vuzov. Mat., 8 (1980), 32–38 | Zbl
[11] Kirichenko V. F., “Ustoichivost pochti ermitovykh struktur, indutsirovannykh $3$-vektornymi proizvedeniyami na shestimernykh podmnogoobraziyakh algebry Keli”, Ukr. geom. sb., 25 (1982), 60–68
[12] Kirichenko V. F., “Ermitova geometriya shestimernykh simmetricheskikh podmnogoobrazii algebry Keli”, Vestn. MGU. Ser. mat. mekh., 3 (1994), 6–13 | Zbl
[13] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, Nauka, M., 1981 | MR
[14] Smolentsev N. K., “Prostranstva rimanovykh metrik”, Itogi nauki i tekhn., Tematich. obzory, Ser. Sovr. mat. prilozh., 31, VINITI RAN, M., 2003, 69–146
[15] Smolentsev N. K., “Spaces of Riemannian metrics”, J. Math. Sci., 142:5 (2007), 2436–2519 | DOI | MR | Zbl
[16] Smolentsev N. K., “O pochti kompleksnoi strukture Keli na sfere $S^6$”, Tr. Rubtsovskogo industr. in-ta, v. 12, Izd. Altaisk. un-ta, Rubtsovsk–Barnaul, 2003, 78–85
[17] Smolentsev N. K., “O pochti kompleksnykh strukturakh na sfere $S^6$”, Vestn. KemGU. Ser. mat., 4 (2005), 155–162
[18] Smolentsev N. K., “O pochti kompleksnykh strukturakh na shestimernykh proizvedeniyakh sfer”, Uch. zap. Kazansk. gos. un-ta. Ser. Fiz.-mat. nauki, 151:4 (2004), 116–135
[19] Smolentsev N. K., “Kanonicheskie psevdokelerovy metriki na shestimernykh nilpotentnykh gruppakh Li”, Vestn. KemGU, 3/1:47 (2011), 155–168
[20] Bor G., Hernandez-Lamoneda L., “The canonical bundle of Hermitian manifold”, Bol. Soc. Mat. Mexicana, 5:3 (1999), 187–198 | MR | Zbl
[21] Borel A., Serre J. P., “Groupes de Lie et puissance reduites de Steenrod”, Am. J. Math., 75 (1953), 409–448 | DOI | MR | Zbl
[22] Bryant R., S.-S. Chern’s study of almost-complex structures on the six-sphere, arXiv: 1405.3405 [math.DG]
[23] Bryant R., “Submanifolds and special structures on the octonians”, J. Differ. Geom., 17 (1982), 185–232 | DOI | MR | Zbl
[24] Butruille J. B., “Classification des variétés approximativement kähleriennes homogénes”, Ann. Global Anal. Geom., 27 (2005), 201–225 | DOI | MR | Zbl
[25] Calabi E., “Construction and properties of some six-dimensional almost-complex manifolds”, Trans. Am. Math. Soc., 87 (1958), 407–438 | MR | Zbl
[26] Calabi E., Eckmann B., “A class of compact complex manifolds which are not algebraic”, Ann. Math., 58 (1935), 494–500 | DOI | MR
[27] Calabi E., Gluck H., “What are best almost-complex structures on the $6$-sphere?”, Proc. Symp. Pure Math., 54:2 (1993), 99–108 | DOI | MR
[28] Cordero L. A., Fernández M., Gray A., “Lie groups with no left invariant complex structures”, Portug. Math., 47:2 (1990), 183–190 | MR
[29] Datta B., Subramanian S., “Nonexistence of almost complex structures on products of even-dimensional spheres”, Topol. Appl., 36:1 (1990), 39–42 | DOI | MR | Zbl
[30] Etesi G., “Complex structure on the six-dimensional sphere from a spontaneous symmetry breaking”, J. Math. Phys., 56 (2015), 043508-1–043508-21 | DOI | MR | Zbl
[31] Euh Y., Sekigawa K., Orthogonal almost complex structures on the Riemannian products of even-dimensional round spheres, arXiv: 1301.6835 [math.DG] | MR
[32] Gray A., “Vector cross products on manifolds”, Trans. Am. Math. Soc., 141 (1969), 465–504 | DOI | MR | Zbl
[33] Gray A., “Weak holonomy groups”, Math. Z., 123:4 (1971), 290–300 | DOI | MR | Zbl
[34] Gray A., Harvella L. M., “The sixteen classes of almost Hermitian manifolds and their linear invariants”, Ann. Math. Pura Appl., 123 (1980), 35–58 | DOI | MR | Zbl
[35] Hashimoto H., Koda T., Mashimi K., Sekigawa K., “Extrinsic homogeneous almost Hermitian 6-dimensional submanifolds in the octonions”, Kodai Math. J., 30 (2007), 297–321 | DOI | MR | Zbl
[36] Harvey R., Lawson H., “Calibrated geometries”, Acta math., 148 (1982), 47–157 | DOI | MR | Zbl
[37] Hitchin N. J., “The geometry of three-forms in six dimensions”, J. Differ. Geom., 55 (2000), 547–576 | DOI | MR | Zbl
[38] Hopf H., “Zur Topologie der komplexen Mannigfaltigkeiten”, Studies and Essays presented to R. Courant, Interscience, New York, 1948, 167–185 | MR
[39] LeBrun C., “Orthogonal complex structures on $S^6$”, Proc. Am. Math. Soc., 101:1 (1958), 136–138 | MR
[40] Loeb J.-J., Manjarin M., Nicolau M., Complex and CR-structures on compact Lie groups associated to Abelian actions, arXiv: math/0610915 [math.OC] | MR
[41] Morimoto A., “Structures complexes sur les Groupes de Lie semi-simples”, C. R. Acad. Sci. Paris, 242 (1956), 1101–1103 | MR | Zbl
[42] Nagy P. A., “Nearly Kähler geometry and Riemannian foliations”, Asian J. Math., 6:3 (2002), 481–504 | DOI | MR | Zbl
[43] O'Braian N. R., Rawnsley J. H., “Twistor spaces”, Ann. Global Anal. Geom., 3:1 (1985), 29–58 | DOI | MR
[44] Peng C. K., Tang Z., “Integrability condition on an almost complex structure and its application”, Acta Math. Sinica, English Ser., 21:6 (2005), 1459–1464 | DOI | MR | Zbl
[45] Reyes Carrión R., Some special geometries defined by Lie groups, Ph.D. Thesis, Oxford Univ., 1993 | Zbl
[46] Samelson H., “A class of complex analytic manifolds”, Port. Math., 12 (1953), 129–132 | MR | Zbl
[47] Sasaki T., “Classification of invariant complex structures on $SL(2,\mathbb{R})$ and $U(2)$”, Kumamoto J. Sci. Math., 14 (1981), 115–123 | MR | Zbl
[48] Sasaki T., “Classification of invariant complex structures on $SL(3,\mathbb{R})$”, Kumamoto J. Sci. Math., 15 (1982), 59–72 | MR | Zbl
[49] Sekigawa K., “Almost complex submanifolds of a six-dimensional sphere”, Kodai Math. J., 6:2 (1983), 174–185 | DOI | MR | Zbl
[50] Snow D. M., “Invariant complex structures on reductive Lie groups”, J. Reine Angew. Math., 371 (1986), 191–215 | MR | Zbl
[51] Tang Z., “Curvature and integrability of an almost Hermitian structure”, Int. J. Math., 17:1 (2006), 97–105 | DOI | MR | Zbl
[52] Vaisman I., “Symplectic twistor spaces”, J. Geom. Phys., 3:4 (1986), 507–524 | DOI | MR | Zbl
[53] Verbitsky M., “An intrinsic volume functional on almost complex $6$-manifolds and nearly Kähler geometry”, Pac. J. Math., 236:5 (2008), 323–344 | DOI | MR
[54] Wang H. C., “Closed manifolds with homogeneous complex structure”, Am. J. Math., 76 (1954), 1–37 | DOI | MR