On Almost Complex Structures on Six-Dimensional Products of Spheres
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Tome 146 (2018), pp. 17-47

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we discuss almost complex structures on the sphere $S^6$ and on the products of spheres $S^3\times S^3$, $S^1\times S^5$, and $S^2\times S^4$. We prove that all almost complex Cayley structures that naturally appear from their embeddings into the Cayley octave algebra $\mathbb{C}\mathrm{a}$ are nonintegrable. We obtain expressions for the Nijenhuis tensor and the fundamental form $\omega$ for each gauge of the space $\mathbb{C}\mathrm{a}$ and prove the nondegeneracy of the form $d\omega$. We show that through each point of a fiber of the twistor bundle over $S^6$, a one-parameter family of Cayley structures passes. We describe the set of $U(2)\times U(2)$-invariant Hermitian metrics on $S^3\times S^3$ and find estimates of the sectional sectional curvature. We consider the space of left-invariant, almost complex structures on $S^3\times S^3=SU(2)\times SU(2)$ and prove the properties of left-invariant structures that yield the maximal value of the norm of the Nijenhuis tensor on the set of left-invariant, orthogonal, almost complex structures.
Keywords: product of spheres, complex structure, almost complex Cayley structure, octave algebra.
@article{INTO_2018_146_a1,
     author = {N. A. Daurtseva and N. K. Smolentsev},
     title = {On {Almost} {Complex} {Structures} on {Six-Dimensional} {Products} of {Spheres}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {17--47},
     publisher = {mathdoc},
     volume = {146},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_146_a1/}
}
TY  - JOUR
AU  - N. A. Daurtseva
AU  - N. K. Smolentsev
TI  - On Almost Complex Structures on Six-Dimensional Products of Spheres
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 17
EP  - 47
VL  - 146
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_146_a1/
LA  - ru
ID  - INTO_2018_146_a1
ER  - 
%0 Journal Article
%A N. A. Daurtseva
%A N. K. Smolentsev
%T On Almost Complex Structures on Six-Dimensional Products of Spheres
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 17-47
%V 146
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_146_a1/
%G ru
%F INTO_2018_146_a1
N. A. Daurtseva; N. K. Smolentsev. On Almost Complex Structures on Six-Dimensional Products of Spheres. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Tome 146 (2018), pp. 17-47. http://geodesic.mathdoc.fr/item/INTO_2018_146_a1/