On Almost Complex Structures on Six-Dimensional Products of Spheres
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Tome 146 (2018), pp. 17-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we discuss almost complex structures on the sphere $S^6$ and on the products of spheres $S^3\times S^3$, $S^1\times S^5$, and $S^2\times S^4$. We prove that all almost complex Cayley structures that naturally appear from their embeddings into the Cayley octave algebra $\mathbb{C}\mathrm{a}$ are nonintegrable. We obtain expressions for the Nijenhuis tensor and the fundamental form $\omega$ for each gauge of the space $\mathbb{C}\mathrm{a}$ and prove the nondegeneracy of the form $d\omega$. We show that through each point of a fiber of the twistor bundle over $S^6$, a one-parameter family of Cayley structures passes. We describe the set of $U(2)\times U(2)$-invariant Hermitian metrics on $S^3\times S^3$ and find estimates of the sectional sectional curvature. We consider the space of left-invariant, almost complex structures on $S^3\times S^3=SU(2)\times SU(2)$ and prove the properties of left-invariant structures that yield the maximal value of the norm of the Nijenhuis tensor on the set of left-invariant, orthogonal, almost complex structures.
Keywords: product of spheres, complex structure, almost complex Cayley structure, octave algebra.
@article{INTO_2018_146_a1,
     author = {N. A. Daurtseva and N. K. Smolentsev},
     title = {On {Almost} {Complex} {Structures} on {Six-Dimensional} {Products} of {Spheres}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {17--47},
     publisher = {mathdoc},
     volume = {146},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_146_a1/}
}
TY  - JOUR
AU  - N. A. Daurtseva
AU  - N. K. Smolentsev
TI  - On Almost Complex Structures on Six-Dimensional Products of Spheres
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 17
EP  - 47
VL  - 146
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_146_a1/
LA  - ru
ID  - INTO_2018_146_a1
ER  - 
%0 Journal Article
%A N. A. Daurtseva
%A N. K. Smolentsev
%T On Almost Complex Structures on Six-Dimensional Products of Spheres
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 17-47
%V 146
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_146_a1/
%G ru
%F INTO_2018_146_a1
N. A. Daurtseva; N. K. Smolentsev. On Almost Complex Structures on Six-Dimensional Products of Spheres. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Tome 146 (2018), pp. 17-47. http://geodesic.mathdoc.fr/item/INTO_2018_146_a1/

[1] Daurtseva N. A., “Ob integriruemosti pochti kompleksnykh struktur na strogo priblizhenno kelerovom $6$-mnogoobrazii”, Sib. mat. zh., 55:1 (2014), 61–65 | MR | Zbl

[2] Daurtseva N. A., “O mnogoobrazii pochti kompleksnykh struktur”, Mat. zametki, 78:1 (2005), 66–71 | DOI | MR | Zbl

[3] Daurtseva N. A., “O suschestvovanii struktur klassa $G_2$ na strogo priblizhenno kelerovom shestimernom mnogoobrazii”, Vestn. Tomsk. un-ta. Ser. mat. mekh., 2014, no. 6 (32), 19–24

[4] Daurtseva N. A., “$U(n+1)\times U(p+1)$-ermitovy metriki na mnogoobrazii $S^{2n+1}\times S^{2p+1}$”, Mat. zametki, 82:2 (2007), 207–223 | DOI | MR | Zbl

[5] Daurtseva N. A., “Invariantnye kompleksnye struktury na $S^3\times S^3$”, Issledovano v Rossii (elektr. zh.), 81 (2004), 882–887

[6] Daurtseva N. A., “Struktury Keli na $S^6$ kak secheniya tvistornogo rassloeniya”, Vestn. NGU. Ser. mat., mekh., inform., 15:4 (2015), 43–49 | Zbl

[7] Daurtseva N. A., “Funktsional normy tenzora Neienkheisa na mnozhestve levoinvariantnykh pochti kompleksnykh struktur na $SU(2)\times SU(2)$, ortogonalnykh otnositelno metriki Killinga—Kartana”, Vestn. KemGU, 17:1 (2004), 156–158

[8] Daurtseva N. A., Smolentsev N. K., “O prostranstve pochti kompleksnykh struktur na mnogoobrazii”, Vestn. KemGU, 7 (2001), 176–186

[9] Kirichenko V. F., “Pochti kelerovy struktury, indutsirovannye $3$-vektornymi proizvedeniyami na shestimernykh podmnogoobraziyakh algebry Keli”, Vestn. MGU. Ser. mat. mekh., 3 (1973), 70–75

[10] Kirichenko V. F., “Klassifikatsiya kelerovykh struktur, indutsirovannykh $3$-vektornymi proizvedeniyami na shestimernykh podmnogoobraziyakh algebry Keli”, Izv. vuzov. Mat., 8 (1980), 32–38 | Zbl

[11] Kirichenko V. F., “Ustoichivost pochti ermitovykh struktur, indutsirovannykh $3$-vektornymi proizvedeniyami na shestimernykh podmnogoobraziyakh algebry Keli”, Ukr. geom. sb., 25 (1982), 60–68

[12] Kirichenko V. F., “Ermitova geometriya shestimernykh simmetricheskikh podmnogoobrazii algebry Keli”, Vestn. MGU. Ser. mat. mekh., 3 (1994), 6–13 | Zbl

[13] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, Nauka, M., 1981 | MR

[14] Smolentsev N. K., “Prostranstva rimanovykh metrik”, Itogi nauki i tekhn., Tematich. obzory, Ser. Sovr. mat. prilozh., 31, VINITI RAN, M., 2003, 69–146

[15] Smolentsev N. K., “Spaces of Riemannian metrics”, J. Math. Sci., 142:5 (2007), 2436–2519 | DOI | MR | Zbl

[16] Smolentsev N. K., “O pochti kompleksnoi strukture Keli na sfere $S^6$”, Tr. Rubtsovskogo industr. in-ta, v. 12, Izd. Altaisk. un-ta, Rubtsovsk–Barnaul, 2003, 78–85

[17] Smolentsev N. K., “O pochti kompleksnykh strukturakh na sfere $S^6$”, Vestn. KemGU. Ser. mat., 4 (2005), 155–162

[18] Smolentsev N. K., “O pochti kompleksnykh strukturakh na shestimernykh proizvedeniyakh sfer”, Uch. zap. Kazansk. gos. un-ta. Ser. Fiz.-mat. nauki, 151:4 (2004), 116–135

[19] Smolentsev N. K., “Kanonicheskie psevdokelerovy metriki na shestimernykh nilpotentnykh gruppakh Li”, Vestn. KemGU, 3/1:47 (2011), 155–168

[20] Bor G., Hernandez-Lamoneda L., “The canonical bundle of Hermitian manifold”, Bol. Soc. Mat. Mexicana, 5:3 (1999), 187–198 | MR | Zbl

[21] Borel A., Serre J. P., “Groupes de Lie et puissance reduites de Steenrod”, Am. J. Math., 75 (1953), 409–448 | DOI | MR | Zbl

[22] Bryant R., S.-S. Chern’s study of almost-complex structures on the six-sphere, arXiv: 1405.3405 [math.DG]

[23] Bryant R., “Submanifolds and special structures on the octonians”, J. Differ. Geom., 17 (1982), 185–232 | DOI | MR | Zbl

[24] Butruille J. B., “Classification des variétés approximativement kähleriennes homogénes”, Ann. Global Anal. Geom., 27 (2005), 201–225 | DOI | MR | Zbl

[25] Calabi E., “Construction and properties of some six-dimensional almost-complex manifolds”, Trans. Am. Math. Soc., 87 (1958), 407–438 | MR | Zbl

[26] Calabi E., Eckmann B., “A class of compact complex manifolds which are not algebraic”, Ann. Math., 58 (1935), 494–500 | DOI | MR

[27] Calabi E., Gluck H., “What are best almost-complex structures on the $6$-sphere?”, Proc. Symp. Pure Math., 54:2 (1993), 99–108 | DOI | MR

[28] Cordero L. A., Fernández M., Gray A., “Lie groups with no left invariant complex structures”, Portug. Math., 47:2 (1990), 183–190 | MR

[29] Datta B., Subramanian S., “Nonexistence of almost complex structures on products of even-dimensional spheres”, Topol. Appl., 36:1 (1990), 39–42 | DOI | MR | Zbl

[30] Etesi G., “Complex structure on the six-dimensional sphere from a spontaneous symmetry breaking”, J. Math. Phys., 56 (2015), 043508-1–043508-21 | DOI | MR | Zbl

[31] Euh Y., Sekigawa K., Orthogonal almost complex structures on the Riemannian products of even-dimensional round spheres, arXiv: 1301.6835 [math.DG] | MR

[32] Gray A., “Vector cross products on manifolds”, Trans. Am. Math. Soc., 141 (1969), 465–504 | DOI | MR | Zbl

[33] Gray A., “Weak holonomy groups”, Math. Z., 123:4 (1971), 290–300 | DOI | MR | Zbl

[34] Gray A., Harvella L. M., “The sixteen classes of almost Hermitian manifolds and their linear invariants”, Ann. Math. Pura Appl., 123 (1980), 35–58 | DOI | MR | Zbl

[35] Hashimoto H., Koda T., Mashimi K., Sekigawa K., “Extrinsic homogeneous almost Hermitian 6-dimensional submanifolds in the octonions”, Kodai Math. J., 30 (2007), 297–321 | DOI | MR | Zbl

[36] Harvey R., Lawson H., “Calibrated geometries”, Acta math., 148 (1982), 47–157 | DOI | MR | Zbl

[37] Hitchin N. J., “The geometry of three-forms in six dimensions”, J. Differ. Geom., 55 (2000), 547–576 | DOI | MR | Zbl

[38] Hopf H., “Zur Topologie der komplexen Mannigfaltigkeiten”, Studies and Essays presented to R. Courant, Interscience, New York, 1948, 167–185 | MR

[39] LeBrun C., “Orthogonal complex structures on $S^6$”, Proc. Am. Math. Soc., 101:1 (1958), 136–138 | MR

[40] Loeb J.-J., Manjarin M., Nicolau M., Complex and CR-structures on compact Lie groups associated to Abelian actions, arXiv: math/0610915 [math.OC] | MR

[41] Morimoto A., “Structures complexes sur les Groupes de Lie semi-simples”, C. R. Acad. Sci. Paris, 242 (1956), 1101–1103 | MR | Zbl

[42] Nagy P. A., “Nearly Kähler geometry and Riemannian foliations”, Asian J. Math., 6:3 (2002), 481–504 | DOI | MR | Zbl

[43] O'Braian N. R., Rawnsley J. H., “Twistor spaces”, Ann. Global Anal. Geom., 3:1 (1985), 29–58 | DOI | MR

[44] Peng C. K., Tang Z., “Integrability condition on an almost complex structure and its application”, Acta Math. Sinica, English Ser., 21:6 (2005), 1459–1464 | DOI | MR | Zbl

[45] Reyes Carrión R., Some special geometries defined by Lie groups, Ph.D. Thesis, Oxford Univ., 1993 | Zbl

[46] Samelson H., “A class of complex analytic manifolds”, Port. Math., 12 (1953), 129–132 | MR | Zbl

[47] Sasaki T., “Classification of invariant complex structures on $SL(2,\mathbb{R})$ and $U(2)$”, Kumamoto J. Sci. Math., 14 (1981), 115–123 | MR | Zbl

[48] Sasaki T., “Classification of invariant complex structures on $SL(3,\mathbb{R})$”, Kumamoto J. Sci. Math., 15 (1982), 59–72 | MR | Zbl

[49] Sekigawa K., “Almost complex submanifolds of a six-dimensional sphere”, Kodai Math. J., 6:2 (1983), 174–185 | DOI | MR | Zbl

[50] Snow D. M., “Invariant complex structures on reductive Lie groups”, J. Reine Angew. Math., 371 (1986), 191–215 | MR | Zbl

[51] Tang Z., “Curvature and integrability of an almost Hermitian structure”, Int. J. Math., 17:1 (2006), 97–105 | DOI | MR | Zbl

[52] Vaisman I., “Symplectic twistor spaces”, J. Geom. Phys., 3:4 (1986), 507–524 | DOI | MR | Zbl

[53] Verbitsky M., “An intrinsic volume functional on almost complex $6$-manifolds and nearly Kähler geometry”, Pac. J. Math., 236:5 (2008), 323–344 | DOI | MR

[54] Wang H. C., “Closed manifolds with homogeneous complex structure”, Am. J. Math., 76 (1954), 1–37 | DOI | MR