Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_146_a0, author = {M. B. Banaru}, title = {On the {Six-Dimensional} {Sphere} with a {Nearly} {K\"ahlerian} {Structure}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {3--16}, publisher = {mathdoc}, volume = {146}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_146_a0/} }
TY - JOUR AU - M. B. Banaru TI - On the Six-Dimensional Sphere with a Nearly K\"ahlerian Structure JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 3 EP - 16 VL - 146 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_146_a0/ LA - ru ID - INTO_2018_146_a0 ER -
%0 Journal Article %A M. B. Banaru %T On the Six-Dimensional Sphere with a Nearly K\"ahlerian Structure %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 3-16 %V 146 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_146_a0/ %G ru %F INTO_2018_146_a0
M. B. Banaru. On the Six-Dimensional Sphere with a Nearly K\"ahlerian Structure. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Tome 146 (2018), pp. 3-16. http://geodesic.mathdoc.fr/item/INTO_2018_146_a0/
[1] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989
[2] Banaru M. B., Ermitova geometriya shestimernykh podmnogoobrazii algebry Keli, Diss....uch. st. kand. fiz.-mat. nauk, MPGU im. V. I. Lenina, M., 1993
[3] Banaru M. B., “Klassy Greya—Khervelly pochti ermitovykh struktur na shestimernykh podmnogoobraziyakh algebry Keli”, Nauch. tr. MPGU im. V. I. Lenina, Prometei, M., 1994, 36–38
[4] Banaru M. B., “O shestimernykh podmnogoobraziyakh algebry Keli”, Differ. geom. mnogoobr. figur (Kaliningrad), 31 (2000), 6–8 | Zbl
[5] Banaru M. B., “Dve teoremy o kosimplekticheskikh giperpoverkhnostyakh shestimernykh ermitovykh podmnogoobrazii algebry Keli”, Izv. vuzov. Ser. mat., 2002, no. 1 (476), 9–12 | Zbl
[6] Banaru M. B., “Ob ermitovykh mnogoobraziyakh, udovletvoryayuschikh aksiome $U$-kosimplekticheskikh poverkhnostei”, Fundam. prikl. mat., 8:3 (2002), 934–937 | MR
[7] Banaru M. B., “Ermitova geometriya shestimernykh podmnogoobrazii algebry Keli”, Mat. sb., 193:5 (2002), 3–16 | DOI | MR | Zbl
[8] Banaru M. B., “O kosimplekticheskikh giperpoverkhnostyakh shestimernykh kelerovykh podmnogoobrazii algebry Keli”, Izv. vuzov. Ser. mat., 2003, no. 7 (494), 59–63 | Zbl
[9] Banaru M. B., “O shestimernykh $G_2$-podmnogoobraziyakh algebry Keli”, Mat. zametki, 74:3 (2003), 323–328 | DOI | MR | Zbl
[10] Banaru M. B., “O sasakievykh giperpoverkhnostyakh shestimernykh ermitovykh podmnogoobrazii algebry Keli”, Mat. sb., 194:8 (2003), 13–24 | DOI | Zbl
[11] Banaru M. B., “O tipovom chisle kosimplekticheskikh giperpoverkhnostei shestimernykh ermitovykh podmnogoobrazii algebry Keli”, Sib. mat. zh., 44:5 (2003), 981–991 | MR | Zbl
[12] Banaru M. B., “O giperpoverkhnostyakh Kenmotsu shestimernykh ermitovykh podmnogoobrazii algebry Keli”, Differ. geom. mnogoobr. figur (Kaliningrad), 34 (2003), 12–21 | Zbl
[13] Banaru M. B., “Aksioma giperpoverkhnostei Kenmotsu dlya shestimernykh ermitovykh podmnogoobrazii algebry Keli”, Sib. mat. zh., 55:2 (2014), 261–266 | MR | Zbl
[14] Banaru M. B., “O pochti kontaktnykh metricheskikh $1$-giperpoverkhnostyakh kelerovykh mnogoobrazii”, Sib. mat. zh., 55:4 (2014), 719–723 | MR | Zbl
[15] Banaru M. B., “Pochti kontaktnye metricheskie giperpoverkhnosti s tipovym chislom $1$ ili $0$ v priblizhenno kelerovykh mnogoobraziyakh”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 3 (2014), 60–62 | Zbl
[16] Banaru M. B., “O pochti kontaktnykh metricheskikh giperpoverkhnostyakh s tipovym chislom $1$ v shestimernykh kelerovykh podmnogoobraziyakh algebry Keli”, Izv. vuzov. Ser. mat., 2014, no. 10, 13–18 | Zbl
[17] Banaru M. B., “O pochti kontaktnykh metricheskikh giperpoverkhnostyakh NK-mnogoobrazii”, Geometricheskii analiz i ego prilozheniya, Mat. II Mezhdunar. konf. (Volgograd, 26–30 maya 2014), Izd-vo VolGU, Volgograd, 2014, 14–17
[18] Banaru M. B., “Geometriya shestimernykh pochti ermitovykh podmnogoobrazii algebry oktav”, Itogi nauki i tekhn., Tematich. obzory, Sovr. mat. prilozh., 126, VINITI, M., 2014, 10–61
[19] Banaru M. B., “$W_4$-mnogoobraziya i aksioma kosimplekticheskikh giperpoverkhnostei”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 5 (2015), 34–37 | Zbl
[20] Banaru M. B., “O pochti kontaktnykh metricheskikh $2$-giperpoverkhnostyakh v shestimernykh kelerovykh podmnogoobraziyakh algebry Keli”, Mezhdunar. konf. «Dni geometrii v Novosibirske–2015», In-t mat. im. S. L. Soboleva SO RAN, Novosibirsk, 2015, 9–10
[21] Banaru M. B., “Aksioma sasakievykh giperpoverkhnostei i shestimernye ermitovy podmnogoobraziya algebry oktav”, Mat. zametki, 99:1 (2016), 140–144 | DOI | MR | Zbl
[22] Banaru M. B., Banaru G. A., “O pochti kontaktnykh metricheskikh giperpoverkhnostyakh shestimernoi sfery”, Sist. kompyut. mat. prilozh., 16 (2015), 126–127
[23] Banaru M. B., Kirichenko V. F., “Ermitova geometriya shestimernykh podmnogoobrazii algebry Keli”, Usp. mat. nauk, 49:1 (1994), 205–206 | MR | Zbl
[24] Daurtseva N. A., “O suschestvovanii struktur klassa $G_2$ na strogo priblizhenno kelerovom shestimernom mnogoobrazii”, Vestn. Tomsk. un-ta. Ser. mat. mekh., 2014, no. 6 (32), 19–24
[25] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya: metody i prilozheniya, Nauka, M., 1986
[26] Kirichenko V. F., “Pochti kelerovy struktury, indutsirovannye $3$-vektornymi proizvedeniyami na shestimernykh podmnogoobraziyakh algebry Keli”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 3 (1973), 70–75
[27] Kirichenko V. F., “Klassifikatsiya kelerovykh struktur, indutsirovannykh $3$-vektornymi proizvedeniyami na shestimernykh podmnogoobraziyakh algebry Keli”, Izv. vuzov. Ser. mat., 1980, no. 8, 32–38 | Zbl
[28] Kirichenko V. F., “Ustoichivost pochti ermitovykh struktur, indutsirovannykh $3$-vektornymi proizvedeniyami na shestimernykh podmnogoobraziyakh algebry Keli”, Ukr. geom. sb., 25 (1982), 60–68
[29] Kirichenko V. F., “Metody obobschennoi ermitovoi geometrii v teorii pochti kontaktnykh mnogoobrazii”, Itogi nauki i tekhn., Probl. geom., 18, VINITI, M., 1986, 25–71
[30] Kirichenko V. F., Differentsialno-geometricheskie struktury na mnogoobraziyakh, Pechatnyi dom, Odessa, 2013
[31] Kirichenko V. F., Banaru M. B., “Pochti kontaktnye metricheskie struktury na giperpoverkhnostyakh pochti ermitovykh mnogoobrazii”, Itogi nauki i tekhn., Tematich. obzory, Sovr. mat. prilozh., 127, VINITI, M., 2014, 5–40
[32] Kirichenko V. F., Vlasova L. I., “Kontsirkulyarnaya geometriya priblizhenno kelerovykh mnogoobrazii”, Mat. sb., 193:5 (2002), 51–76 | DOI
[33] Kirichenko V. F., Rustanov A. R., Shikhab A., “Geometriya tenzora kongarmonicheskoi krivizny pochti ermitovykh mnogoobrazii”, Mat. zametki, 90:1 (2011), 87–103 | DOI | MR | Zbl
[34] Kirichenko V. F., Uskorev I. V., “Invarianty konformnogo preobrazovaniya pochti kontaktnykh metricheskikh struktur”, Mat. zametki, 84:6 (2008), 838–850 | DOI | Zbl
[35] Kirichenko V. F., Shikhab A., “O geometrii tenzora kongarmonicheskoi krivizny priblizhenno kelerovykh mnogoobrazii”, Fundam. prikl. mat., 16:2 (2010), 43–54 | MR
[36] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, v. 1, Nauka, M., 1981 | MR
[37] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, v. 2, Nauka, M., 1981 | MR
[38] Kusova E. V., O geometrii slabo kosimplekticheskikh struktur, Diss....uch. st. kand. fiz.-mat. nauk, MPGU im. V. I. Lenina, M., 2013
[39] Mischenko A. S., Fomenko A. T., Kurs differentsialnoi geometrii i topologii, Izd-vo MGU, M., 1980 | MR
[40] Rashevskii P. K., Rimanova geometriya i tenzornyi analiz, Nauka, M., 1967 | MR
[41] Stepanova L. V., “Kvazisasakieva struktura na giperpoverkhnostyakh ermitovykh mnogoobrazii”, Nauch. tr. MPGU im. V. I. Lenina, 1995, 187–191
[42] Stepanova L. V., Kvazisasakieva struktura na giperpoverkhnostyakh ermitovykh mnogoobrazii, Diss....uch. st. kand. fiz.-mat. nauk, MPGU im. V. I. Lenina, M., 1995
[43] Stepanova L. V., Banaru G. A., Banaru M. B., “O kvazisasakievykh giperpoverkhnostyakh kelerovykh mnogoobrazii”, Izv. vuzov. Ser. mat., 2016, no. 1, 86–89 | Zbl
[44] Khart N., Geometricheskoe kvantovanie v deistvii, Mir, M., 1985
[45] Abu-Saleem A., Banaru G. A., “On some contact metric structures on hypersurfaces in a Kählerian manifold”, Acta Univ. Apulensis, 31 (2012), 179–189 | MR | Zbl
[46] Abu-Saleem A., Banaru M. B., “Two theorems on Kenmotsu hypersurfaces in a $W_3$-manifold”, Stud. Univ. Babeş–Bolyai. Math., 51:3 (2005), 3–11 | MR
[47] Abu-Saleem A., Banaru M. B., “Some applications of Kirichenko tensors”, Anal. Univ. Oradea. Fasc. Mat., 17:2 (2010), 201–208 | MR | Zbl
[48] Abu-Saleem A., Banaru M. B., “On almost contact metric hypersurfaces of nearly Kählerian 6-sphere”, Malaysian J. Math. Sci., 8:1 (2014), 35–46 | MR
[49] Abu-Saleem A., Shihab A., Banaru M. B., “On six-dimensional Kählerian and nearly-Kählerian submanifolds of Cayley algebra”, Anal. Univ. Oradea. Fasc. Mat., 21:1 (2014), 29–39 | MR | Zbl
[50] Alekseevsky D. V., Kruglikov B. S., Winther H., “Homogeneous almost complex structures in dimension $6$ with semi-simple isotropy”, Ann. Glob. Anal. Geom., 46 (2014), 361–387 | DOI | MR | Zbl
[51] Banaru M. B., “Six theorems on six-dimensional Hermitian submanifolds of Cayley algebra”, Izv. AN Respubliki Moldova. Ser. Mat., 2000, no. 3 (34), 3–10 | MR | Zbl
[52] Banaru M. B., “On six-dimensional Hermitian submanifolds of Cayley algebra satisfying the $g$-cosymplectic hypersurfaces axiom”, Ann. Sofia Univ. St. K. Ohridski, 94 (2000), 91–96 | MR
[53] Banaru M. B., “Two theorems on cosymplectic hypersurfaces of six-dimensional Hermitian submanifolds of Cayley algebra”, J. Harbin Inst. Tech., 8:1 (2001), 38–40 | MR
[54] Banaru M. B., “A new characterization of the Gray–Hervella classes of almost Hermitian manifolds”, Proc. 8th Int. Conf. on Differential Geometry and Its Aplications (Opava, Czech Republic, 2001), 4 | MR
[55] Banaru M. B., “Some theorems on cosymplectic hypersurfaces of six-dimensional Hermitian submanifolds of Cayley algebras”, Mat. Vesnik, 53:3–4 (2001), 103–110 | MR | Zbl
[56] Banaru M. B., “A note on six-dimensional $G_2$-submanifolds of Cayley algebra”, An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat., 47:2 (2001), 389–396 | MR | Zbl
[57] Banaru M. B., “On spectra of some tensors of six-dimensional Kählerian submanifolds of the Cayley algebra”, Stud. Univ. Babeş–Bolyai. Math., 47:1 (2002), 11–17 | MR | Zbl
[58] Banaru M. B., “On nearly-cosymplectic hypersurfaces in nearly-Kählerian manifolds”, Stud. Univ. Babeş–Bolyai. Math., 47:3 (2002), 3–11 | MR | Zbl
[59] Banaru M. B., “On Kenmotsu hypersurfaces in a six-dimensional Hermitian submanifolds of Cayley algebra”, Proc. Int. Conf. “Contemporary Geometry and Related Topics” (Belgrade, 2002), 5 | MR
[60] Banaru M. B., “A note on six-dimensional $G_1$-submanifolds of the octave algebra”, Taiwan. J. Math., 6:3 (2002), 383–388 | DOI | MR | Zbl
[61] Banaru M. B., “Six-dimensional Hermitian submanifolds of Cayley algebra and $u$-Sasakian hypersurfaces axiom”, Izv. Akad. Nauk Moldova. Ser. Mat., 2002, no. 2 (39), 71–76 | MR | Zbl
[62] Banaru M. B., “On totally umbilical cosymplectic hypersurfaces of six-dimensional Hermitian submanifolds of Cayley algebra”, Acta Univ. Palacki Olomuc. Math., 41 (2002), 7–12 | MR | Zbl
[63] Banaru M. B., “On the type number of six-dimensional planar Hermitian submanifolds of Cayley algebra”, Kyungpook Math. J., 43:1 (2003), 27–35 | MR | Zbl
[64] Banaru M. B., “On Kenmotsu hypersurfaces in a six-dimensional Hermitian submanifold of Cayley algebra”, Proc. Int. Conf. “Contemporary Geometry and Related Topics” (Belgrade, Yugoslavia, May 15–21, 2002), World Scientific, Singapore, 2004, 33–40 | MR | Zbl
[65] Banaru M. B., “On the Gray–Hervella classes of AH-structures on six-dimensional submanifolds of Cayley algebra”, Ann. Sofia Univ. St. K. Ohridski, 95 (2004), 125–131 | MR | Zbl
[66] Banaru M. B., “On Kirichenko tensors of nearly-Kählerian manifolds”, J. Sichuan Univ. Sci. Eng., 25:4 (2012), 1–5
[67] Banaru M. B., “On some almost contact metric hypersurfaces of nearly Kählerian manifolds”, Proc. 20th Conf. on Applied and Industr. Mathematics Dedicated to Academician M. Ciobanu, Chişinău, 2012, 16–17
[68] Banaru M. B., “The $U$-Kenmotsu hypersurfaces axiom and six-dimensional Hermitian submanifolds of Cayley algebra”, J. Sichuan Univ. Sci. Eng., 26:3 (2013), 1–5 | MR
[69] Banaru M. B., “Special Hermitian manifolds and the $1$-cosymplectic hypersurfaces axiom”, Bull. Austr. Math. Soc., 90:3 (2014), 504–509 | DOI | MR | Zbl
[70] Banaru M. B., “On almost contact metric $2$-hypersurfaces in Kählerian manifolds”, Bull. Transilvania Univ. of Braşov. Ser. III. Math. Inform. Phys., 9 (58):1 (2016), 1–10 | MR | Zbl
[71] Banaru M. B., Banaru G. A., “A note on six-dimensional planar Hermitian submanifolds of Cayley algebra”, Izv. Akad. Nauk Moldova. Ser. Mat., 2014, no. 1 (74), 23–32 | MR | Zbl
[72] Banaru M. B., Banaru G. A., “$1$-Cosymplectic hypersurfaces axiom and six-dimensional planar Hermitian submanifolds of the octonian”, SUT J. Math, 51:1 (2015), 1–9 | MR | Zbl
[73] Banaru M. B., Banaru G. A., “A note on almost contact metric hypersurfaces of nearly Kählerian $6$-sphere”, Bull. Transilvania Univ. of Braşov. Ser. III. Math. Inform. Phys., 8 (57):2 (2015), 21–28 | MR | Zbl
[74] Belgun F., Moroianu A., “Nearly Kähler 6-manifolds with reduced holonomy”, Ann. Global Anal. Geom., 19 (2001), 307–319 | DOI | MR | Zbl
[75] Blair D. E., “Contact manifolds in Riemannian geometry”, Lect. Notes Math., 509 (1976), 1–145 | DOI | MR
[76] Blair D. E., “Riemannian geometry of contact and symplectic manifolds”, Progr. Math., Birkhäuser, Boston–Basel–Berlin, 2002 | MR
[77] Bolton J., Dillen F., Dioos B., Vrancken L., “Almost complex surfaces in the nearly Kähler $S^3\times S^3$”, Tôhoku Math. J., 67 (2015), 1–17 | DOI | MR | Zbl
[78] Brown R., Gray A., “Vector cross products”, Commum. Math. Helv., 42 (1967), 222–236 | DOI | MR | Zbl
[79] Calabi E., “Construction and properties of some 6-dimensional almost complex manifolds”, Trans. Am. Math. Soc., 87:2 (1958), 407–438 | MR | Zbl
[80] Cho J. T., Sekigawa K., “Six-dimensional quasi-Kählerian manifolds of constant sectional curvature”, Tsukuba J. Math., 22:3 (1998), 611–627 | DOI | MR | Zbl
[81] Deszcz R., Dillen F., Verstraelen L., Vrancken L., “Quasi-Einstein totally real submanifolds of nearly Kähler $6$-sphere”, Tôhoku Math. J., 51 (1999), 461–478 | DOI | MR | Zbl
[82] Djoric M., Vrancken L., “Three-dimensional CR-submanifolds in the nearly Kähler $6$-sphere with one-dimensional nullity”, Int. J. Math., 20:2 (2009), 189–208 | DOI | MR | Zbl
[83] Ejiri N., “Totally real submanifolds in a $6$-sphere”, Proc. Am. Math. Soc., 83 (1981), 759–763 | MR | Zbl
[84] Endo H., “On the curvature tensor of nearly cosymplectic manifolds of constant $Phi$-sectional curvature”, An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat., 51:2 (2005), 439–454 | MR | Zbl
[85] Endo H., “Remarks on nearly cosymplectic manifolds of constant $Phi$-sectional curvature with a submersion of geodesic fibers”, Tensor, N.S., 66 (2005), 26–39 | MR
[86] Endo H., “On nearly cosymplectic manifolds of constant $Phi$-sectional curvature”, Tensor, N.S., 67 (2006), 323–335 | MR | Zbl
[87] Endo H., “Some remarks of nearly cosymplectic manifolds of constant $Phi$-sectional curvature”, Tensor, N.S., 68 (2007), 204–221 | MR | Zbl
[88] Funabashi S., Pak J. S., “Tubular hypersurfaces of the nearly Kähler $6$-sphere”, Saitama Math. J., 19 (2001), 13–36 | MR | Zbl
[89] Gheorghiev G., Oproiu V., Varietăţi diferentiabile finit şi infinit dimensionale, Academia RSR, Bucureşti, 1976 | MR | Zbl
[90] Gray A., “Some examples of almost Hermitian manifolds”, Ill. J. Math., 10:2 (1966), 353–366 | DOI | MR | Zbl
[91] Gray A., “Six-dimensional almost complex manifolds defined by means of three-fold vector cross products”, Tôhoku Math. J., 21:4 (1969), 614–620 | DOI | MR | Zbl
[92] Gray A., “Vector cross products on manifolds”, Trans. Am. Math. Soc., 141 (1969), 465–504 | DOI | MR | Zbl
[93] Gray A., “Almost complex submanifolds of the six sphere”, Proc. Am. Math. Soc., 20 (1969), 277–280 | DOI | MR
[94] Gray A., “Nearly Kähler manifolds”, J. Differ. Geom., 4 (1970), 283–309 | DOI | MR | Zbl
[95] Gray A., “The structure of nearly Kähler manifolds”, Math. Ann., 223 (1976), 223–248 | DOI | MR | Zbl
[96] Gray A., Hervella L. M., “The sixteen classes of almost Hermitian manifolds and their linear invariants”, Ann. Mat. Pura Appl., 123:4 (1980), 35–58 | DOI | MR | Zbl
[97] Haizhong Li., “The Ricci curvature of totally real $3$-dimensional submanifolds of the nearly Kähler $6$-sphere”, Bull. Belg. Math. Soc. Simon Stevin, 3 (1996), 193–199 | MR | Zbl
[98] Haizhong Li, Gouxin Wei., “Classification of Lagrangian Willmore submanifolds of the nearly Kähler $6$-sphere $S^6(1)$ with constant scalar curvature”, Glasgow Math. J., 48 (2006), 53–64 | DOI | MR | Zbl
[99] Hashimoto H., “Characteristic classes of oriented six-dimensional submanifolds in the octonions”, Kodai Math. J., 16 (1993), 65–73 | DOI | MR | Zbl
[100] Hashimoto H., “Oriented six-dimensional submanifolds in the octonions”, Int. J. Math. Math. Sci., 18 (1995), 111–120 | DOI | MR | Zbl
[101] Hashimoto H., Koda T., Mashimo K., Sekigawa K., “Extrinsic homogeneous Hermitian six-dimensional submanifolds in the octonions”, Kodai Math. J., 30 (2007), 297–321 | DOI | MR | Zbl
[102] Hu Z., Zhang Y., “Rigidity of the almost complex surfaces in the nearly Kähler $S^3 \times S^3$”, J. Geom. Phys., 100 (2016), 80–91 | DOI | MR | Zbl
[103] Ianus S., Geometrie diferentială cu aplicaţii în teoria relativităţii, Editura Acad. Române, Bucureşti, 1983 | MR | Zbl
[104] Ishii Y., “On conharmonic transformations”, Tensor, N.S., 7 (1957), 73–80 | MR | Zbl
[105] Jost J., Riemannian geometry and geometric analysis, Springer-Verlag, Berlin–Heidelberg–New York, 2003 | MR
[106] Kholodenko A. L., Applications of contact geometry and topology in physics, World Scientific, New Jersey–London–Singapore, 2013 | MR | Zbl
[107] Kim H. S., Takagi R., “The type number of real hypersurfaces in $P_n(C)$”, Tsukuba J. Math., 20 (1996), 349–356 | DOI | MR | Zbl
[108] Kurihara H., “On real hypersurfaces in a complex space form”, Math. J. Okayama Univ., 40 (1998), 177–186 | MR
[109] Kurihara H., “The type number on real hypersurfaces in a quaternionic space form”, Tsukuba J. Math., 24 (2000), 127–132 | DOI | MR | Zbl
[110] Kurihara H., Takagi R., “A note on the type number of real hypersurfaces in $P_n(C)$”, Tsukuba J. Math., 22 (1998), 793–802 | DOI | MR
[111] Matsumoto M., “On six-dimensional almost Tachibana spaces”, Tensor, N.S., 23 (1972), 250–252 | MR | Zbl
[112] Moroianu A., Semmelmann U., “Infinitesimal Einstein deformations of nearly Kähler metrics”, Trans. Am. Math. Soc., 363:6 (2011), 3057–3069 | DOI | MR | Zbl
[113] Nagy P. A., “On nearly-Kähler geometry”, Ann. Global Anal. Geom., 22 (2002), 167–178 | DOI | MR | Zbl
[114] Nivas R., Agnihotri A., “On semi-symmetric non-metric connections on a nearly Kähler manifold”, Tensor, N.S., 72 (2010), 279–284 | MR | Zbl
[115] Omachi E., “On nearly Kähler manifolds with almost analytic Ricci operator”, Tensor, N.S., 71 (2009), 87–90 | MR
[116] Pitiş G., Geometry of Kenmotsu manifolds, Publ. House Transilvania Univ., Braşov, 2007 | MR | Zbl
[117] Sekigawa K., “Almost complex submanifolds of a six-dimensional sphere”, Kodai Math. J., 6 (1983), 174–185 | DOI | MR | Zbl
[118] Sharma R., Deshmukh S., “On Lagrangian submanifolds of the nearly Kähler $6$-sphere”, Contemp. Math., 674 (2016), 153–160 | DOI | MR | Zbl
[119] Shern S. S., Do Carmo M. P., Kobayashi S., “Minimal submanifolds of a sphere with second fundamental form of constant length”, Functional Analysis and Related Fields, Springer-Verlag, Berlin, 1970, 59–75 | MR
[120] Takagi R., “A class of hypersurfaces with constant principal curvatures in a sphere”, J. Differ. Geom., 11 (1976), 225–233 | DOI | MR | Zbl
[121] Tricerri F., Vanhecke L., “Curvature tensors on almost Hermitian manifolds”, Trans. Am. Math. Soc., 267 (1981), 365–398 | DOI | MR | Zbl
[122] Vanhecke L., “The Bochner curvature tensor on almost Hermitian manifolds”, Geom. Dedicata, 6 (1977), 389–397 | DOI | MR | Zbl
[123] Vezzoni L., “On the canonical Hermitian connection in nearly Kahler manifolds”, Kodai Math. J., 32 (2009), 420–431 | DOI | MR | Zbl
[124] Vranchen L., “Special Lagrangian submanifolds of the nearly Kähler $6$-sphere”, Glasgow Math. J., 45 (2003), 415–426 | DOI | MR
[125] Yano K., Differential geometry on complex and almost complex spaces, Pergamon Press, Oxford, 1965 | MR | Zbl
[126] Yano K., Ishihara S., “Almost contact structures induced on hypersurfaces in complex and almost complex spaces”, Kodai Math. Sem. Rep., 17:3 (1965), 222–249 | DOI | MR | Zbl
[127] Yano K., Kon M., Structures on manifolds, World Scientific, Singapore, 1984 | MR | Zbl