Dissipative Integrable Systems on the Tangent Bundles of $2$- and~$3$-Dimensional Spheres
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 145 (2018), pp. 86-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove the explicit integrability of certain classes of dynamical systems on the tangent bundles of $2$- and $3$-dimensional spheres in the case where forces are fields with so-called variable dissipation.
Keywords: dynamical system, dissipation, transcendental first integral, integrability.
@article{INTO_2018_145_a1,
     author = {M. V. Shamolin},
     title = {Dissipative {Integrable} {Systems} on the {Tangent} {Bundles} of $2$- and~$3${-Dimensional} {Spheres}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {86--94},
     publisher = {mathdoc},
     volume = {145},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_145_a1/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Dissipative Integrable Systems on the Tangent Bundles of $2$- and~$3$-Dimensional Spheres
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 86
EP  - 94
VL  - 145
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_145_a1/
LA  - ru
ID  - INTO_2018_145_a1
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Dissipative Integrable Systems on the Tangent Bundles of $2$- and~$3$-Dimensional Spheres
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 86-94
%V 145
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_145_a1/
%G ru
%F INTO_2018_145_a1
M. V. Shamolin. Dissipative Integrable Systems on the Tangent Bundles of $2$- and~$3$-Dimensional Spheres. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 145 (2018), pp. 86-94. http://geodesic.mathdoc.fr/item/INTO_2018_145_a1/

[1] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, VINITI, M., 1985

[2] Burbaki N., Gruppy i algebry Li, Mir, M., 1972 | MR

[3] Georgievskii D. V., Shamolin M. V., “Pervye integraly uravnenii dvizheniya obobschennogo giroskopa v $\mathbb{R}^{n}$”, Vestn. MGU. Ser. 1. Mat. Mekh., 2003, no. 5, 37–41 | Zbl

[4] Kozlov V. V., “Integriruemost i neintegriruemost v gamiltonovoi mekhanike”, Usp. mat. nauk, 38:1 (1983), 3–67 | MR | Zbl

[5] Trofimov V. V., Shamolin M. V., “Geometricheskie i dinamicheskie invarianty integriruemykh gamiltonovykh i dissipativnykh sistem”, Fundam. prikl. mat., 16:4 (2010), 3–229

[6] Chaplygin S. A., “O dvizhenii tyazhelykh tel v neszhimaemoi zhidkosti”, Poln. sobr. soch., v. 1, AN SSSR, L., 1933, 133–135

[7] Chaplygin S. A., Izbrannye trudy, Nauka, M., 1976 | MR

[8] Shamolin M. V., “Ob integriruemom sluchae v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Izv. RAN. Mekh. tv. tela, 1997, no. 2, 65–68

[9] Shamolin M. V., “Ob integriruemosti v transtsendentnykh funktsiyakh”, Usp. mat. nauk, 53:3 (1998), 209–210 | DOI | MR | Zbl

[10] Shamolin M. V., “Novye integriruemye po Yakobi sluchai v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Dokl. RAN, 364:5 (1999), 627–629 | Zbl

[11] Shamolin M. V., “Integriruemost po Yakobi v zadache o dvizhenii chetyrekhmernogo tverdogo tela v soprotivlyayuscheisya”, Dokl. RAN, 375:3 (2000), 343–346

[12] Shamolin M. V., “Ob odnom integriruemom sluchae uravnenii dinamiki na $so(4)\times\mathbb{R}^{4}$”, Usp. mat. nauk, 60:6 (2005), 233–234 | DOI | MR | Zbl

[13] Shamolin M. V., “Sluchai polnoi integriruemosti v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi, pri uchete vraschatelnykh proizvodnykh momenta sil po uglovoi skorosti”, Dokl. RAN, 403:4 (2005), 482–485

[14] Shamolin M. V., Metody analiza dinamicheskikh sistem s peremennoi dissipatsiei v dinamike tverdogo tela, Izd-vo «Ekzamen», M., 2007

[15] Shamolin M. V., “Sluchai polnoi integriruemosti v dinamike na kasatelnom rassloenii dvumernoi sfery”, Usp. mat. nauk, 62:5 (2007), 169–170 | DOI | MR | Zbl

[16] Shamolin M. V., “Dinamicheskie sistemy s peremennoi dissipatsiei: podkhody, metody, prilozheniya”, Fundam. prikl. mat., 14:3 (2008), 3–237

[17] Shamolin M. V., “Novye integriruemye sluchai v dinamike tela, vzaimodeistvuyuschego so sredoi, pri uchete zavisimosti momenta sily soprotivleniya ot uglovoi skorosti”, Prikl. mat. mekh., 72:2 (2008), 273–287 | MR | Zbl

[18] Shamolin M. V., “Novye sluchai polnoi integriruemosti v dinamike dinamicheski simmetrichnogo chetyrekhmernogo tverdogo tela v nekonservativnom pole”, Dokl. RAN, 425:3 (2009), 338–342 | MR | Zbl

[19] Shamolin M. V., “Novye sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela”, Dokl. RAN, 431:3 (2010), 339–343 | MR | Zbl

[20] Shamolin M. V., “Sluchai polnoi integriruemosti v dinamike chetyrekhmernogo tverdogo tela v nekonservativnom pole”, Usp. mat. nauk, 65:1 (2010), 189–190 | DOI | MR | Zbl

[21] Shamolin M. V., “Novyi sluchai integriruemosti v dinamike chetyrekhmernogo tverdogo tela v nekonservativnom pole”, Dokl. RAN, 437:2 (2011), 190–193 | MR

[22] Shamolin M. V., “Polnyi spisok pervykh integralov v zadache o dvizhenii chetyrekhmernogo tverdogo tela v nekonservativnom pole pri nalichii lineinogo dempfirovaniya”, Dokl. RAN, 440:2 (2011), 187–190 | MR

[23] Shamolin M. V., “Novyi sluchai integriruemosti v dinamike chetyrekhmernogo tverdogo tela v nekonservativnom pole pri nalichii lineinogo dempfirovaniya”, Dokl. RAN, 444:5 (2012), 506–509 | MR

[24] Shamolin M. V., “Novyi sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi, pri uchete lineinogo dempfirovaniya”, Dokl. RAN, 442:4 (2012), 479–481 | MR

[25] Shamolin M. V., “Integriruemye sistemy s peremennoi dissipatsiei na kasatelnom rassloenii k mnogomernoi sfere i prilozheniya”, Fundam. prikl. mat., 20:4 (2015), 3–231 | MR

[26] Shamolin M. V., “Malomernye i mnogomernye mayatniki v nekonservativnom pole. Chast 1”, Itogi nauki i tekhn. Sovr. mat. prilozh. Tematich. obzory, 134 (2017), 6–128

[27] Shamolin M. V., “Malomernye i mnogomernye mayatniki v nekonservativnom pole. Chast 2”, Itogi nauki i tekhn. Sovr. mat. prilozh. Tematich. obzory, 135 (2017), 3–93

[28] Shamolin M. V., “Classification of complete integrability cases in four-dimensional symmetric rigid-body dynamics in a nonconservative field”, J. Math. Sci., 165:6 (2010), 743–754 | DOI | MR | Zbl

[29] Shamolin M. V., “Comparison of complete integrability cases in dynamics of a two-, three-, and four-dimensional rigid body in a nonconservative field”, J. Math. Sci., 187:3 (2012), 346–359 | DOI | MR | Zbl

[30] Shamolin M. V., “Variety of integrable cases in dynamics of low- and multi-dimensional rigid bodies in nonconservative force fields”, J. Math. Sci., 204:4 (2015), 379–530 | DOI | MR | Zbl