Investigation of the Motion of a Heavy Body of Revolution on a Perfectly Rough Plane by the Kovacic Algorithm
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 145 (2018), pp. 3-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

Investigation of various problems of mechanics and mathematical physics is reduced to the solution of second-order linear differential equations with variable coefficients. In 1986, American mathematician J. Kovacic proposed an algorithm for solution of a second-order linear differential equation in the case where the solution can be expressed in terms of so-called Liouville functions. If a linear second-order differential equation has no Liouville solutions, the Kovacic algorithm also allows to ascertain this fact. In this paper, we discuss the application of the Kovacic algorithm to the problem of the motion of a heavy body of revolution on a perfectly rough horizontal plane. The existence of Liouville solutions of the problem is examined for the cases where the rolling body is an infinitely thin disk, a disk of finite thickness, a dynamically symmetric torus, a paraboloid of revolution, and a spindle-shaped body.
Keywords: nonholonomic system, dynamically symmetric body, Kovacic algorithm
Mots-clés : Liouville solutions.
@article{INTO_2018_145_a0,
     author = {A. S. Kuleshov and G. A. Chernyakov},
     title = {Investigation of the {Motion} of a {Heavy} {Body} of {Revolution} on a {Perfectly} {Rough} {Plane} by the {Kovacic} {Algorithm}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--85},
     publisher = {mathdoc},
     volume = {145},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_145_a0/}
}
TY  - JOUR
AU  - A. S. Kuleshov
AU  - G. A. Chernyakov
TI  - Investigation of the Motion of a Heavy Body of Revolution on a Perfectly Rough Plane by the Kovacic Algorithm
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 3
EP  - 85
VL  - 145
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_145_a0/
LA  - ru
ID  - INTO_2018_145_a0
ER  - 
%0 Journal Article
%A A. S. Kuleshov
%A G. A. Chernyakov
%T Investigation of the Motion of a Heavy Body of Revolution on a Perfectly Rough Plane by the Kovacic Algorithm
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 3-85
%V 145
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_145_a0/
%G ru
%F INTO_2018_145_a0
A. S. Kuleshov; G. A. Chernyakov. Investigation of the Motion of a Heavy Body of Revolution on a Perfectly Rough Plane by the Kovacic Algorithm. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 145 (2018), pp. 3-85. http://geodesic.mathdoc.fr/item/INTO_2018_145_a0/

[1] Bernulli I., Izbrannye sochineniya po mekhanike, ONTI, M.-L., 1937

[2] Gelfand I. M., Lektsii po lineinoi algebre, Nauka, M., 1971 | MR

[3] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971 | MR

[4] Dalamber Zh., Dinamika, Gostekhizdat, M.-L., 1950

[5] Zobova A. A., “O sopryazhenii reshenii dvukh integriruemykh zadach: kachenie tela s ostriem po ploskosti”, Avtomat. telemekh., 2007, no. 8, 156–162 | MR | Zbl

[6] Kaplanskii I., Vvedenie v differentsialnuyu algebru, IL, M., 1959

[7] Karapetyan A. V., Ustoichivost statsionarnykh dvizhenii, Editorial URSS, M., 1998

[8] Kuleshov A. S., “Pervye integraly v zadache o kachenii tela vrascheniya po sherokhovatoi ploskosti”, Dokl. RAN, 391:3 (2003), 340–342 | MR

[9] Kuleshov A. S., “O pervykh integralakh uravnenii dvizheniya tyazhelogo tela vrascheniya na sherokhovatoi ploskosti”, Mekhanika tverdogo tela, Mezhvedomstv. sb. nauch. tr., v. 34, Donetsk, 2004, 72–80

[10] Kuleshov A. S., “Pervye integraly v zadache o dvizhenii paraboloida vrascheniya po sherokhovatoi ploskosti”, Dokl. RAN, 400:1 (2005), 46–48 | MR

[11] Kuleshov A. S., “O pervykh integralakh uravnenii dvizheniya simmetrichnogo girostata na absolyutno sherokhovatoi ploskosti”, Prikl. mat. mekh., 70:1 (2006), 40–45 | MR | Zbl

[12] Kuleshov A. S., Dobrynin D. S., Chernyakov G. A., “Issledovanie zadachi o dvizhenii tyazhelogo tela vrascheniya po sherokhovatoi ploskosti metodom Kovachicha”, XI Vserossiiskii s'ezd po fundamentalnym problemam teoreticheskoi i prikladnoi mekhaniki: sb. dokl., Izd-vo Kazan. un-ta, Kazan, 2015, 2160–2161

[13] Kuleshov A. S., Chernyakov G. A., “Primenenie algoritma Kovachicha dlya issledovaniya zadachi o dvizhenii tyazhelogo tela vrascheniya po absolyutno sherokhovatoi ploskosti”, Vestn. S.-Pb. un-ta. Ser. 1. Mat. mekh. astron., 2013, no. 4, 93–102

[14] Kuleshov A. S., Chernyakov G. A., “O kachenii paraboloida vrascheniya po nepodvizhnoi absolyutno sherokhovatoi ploskosti”, Vestn. S.-Pb. un-ta. Ser. 1. Mat. mekh. astron., 2014, no. 4, 624–631

[15] Lagranzh Zh., Analiticheskaya mekhanika, v. I, Gostekhizdat, M.-L., 1950

[16] Lobas L. G., “Rivnyannya rukhu tora ta malykh kolivan mototsikla kolo statsionarnogo rukhu po ploschini”, Prikl. mekh., 8:2 (1962)

[17] Lobas L. G., “Zvedennya do kvadratur rivnyan rukhu tora po ploschini”, Prikl. mekh., 9:4 (1963), 409–415

[18] Markeev A. P., Dinamika tela, soprikasayuschegosya s tverdoi poverkhnostyu, Nauka, M., 1992

[19] Mindlin I. M., Pozharitskii G. K., “Ob ustoichivosti statsionarnykh dvizhenii tyazhelogo tela vrascheniya na absolyutno sherokhovatoi gorizontalnoi ploskosti”, Prikl. mat. mekh., 29:4 (1965), 742–745 | Zbl

[20] Moschuk N. K., “O privedenii uravnenii dvizheniya nekotorykh negolonomnykh sistem Chaplygina k forme uravnenii Lagranzha i Gamiltona”, Prikl. mat. mekh., 51:2 (1987), 223–229 | MR

[21] Moschuk N. K., “Kachestvennyi analiz dvizheniya tyazhelogo tela vrascheniya na absolyutno sherokhovatoi ploskosti”, Prikl. mat. mekh., 52:2 (1988), 203–210 | MR

[22] Mushtari Kh. M., “O kachenii tyazhelogo tverdogo tela vrascheniya po nepodvizhnoi gorizontalnoi ploskosti”, Mat. sb., 39:1–2 (1932), 105–126 | Zbl

[23] Neimark Yu. I., Fufaev N. A., Dinamika negolonomnykh sistem, Nauka, M., 1967

[24] Nyuton I., Matematicheskie nachala naturalnoi filosofii, Nauka, M., 1989

[25] Khovanskii A. G., Topologicheskaya teoriya Galua. Razreshimost i nerazreshimost uravnenii v konechnom vide, MTsNMO, M., 2008

[26] Chaplygin S. A., “O dvizhenii tyazhelogo tela vrascheniya na gorizontalnoi ploskosti”, Trudy otdeleniya fizicheskikh nauk Obschestva lyubitelei estestvoznaniya, antropologii i etnografii, 9:1 (1897), 10–16

[27] Appell P., “Sur l'intégration des équations du mouvement d'un corps pesant de revolution roulant par une arête circulaire sur un plane horizontal; cas particulier du cerceau”, Rend. Circ. Mat. Palermo, 24 (1900), 1–6 | DOI

[28] Batista M., “Steady motion of a rigid disk of finite thickness on a horizontal plane”, Int. J. Nonlin. Mech., 41:4 (2006), 605–621 | DOI | Zbl

[29] Batista M., “Integrability of the motion of a rolling disk of finite thickness on a plane”, Int. J. Nonlin. Mech., 41:6-7 (2006), 850–859 | DOI | Zbl

[30] Batista M., “The nearly horizontally rolling of a thick disk on a rough plane”, Regular Chaot. Dynam., 13:4 (2008), 344–354 | DOI | MR | Zbl

[31] Chernyakov G. A., Kuleshov A. S., “Investigation of the problem of motion of a heavy dynamically symmetric body on a perfectly rough plane by the Kovacic algorithm”, Proc. XLI Summer School–Conference «Advanced Problems in Mechanics (APM-2013)», 2013, 310–320 | MR

[32] Chernyakov G. A., Kuleshov A. S., “Motion of a dynamically symmetric paraboloid on a perfectly rough plane”, Proc. XLII Summer School–Conference «Advanced Problems in Mechanics (APM-2014)», 2014, 177–183

[33] Chernyakov G. A., Kuleshov A. S., “Investigation of the problem of motion of a heavy dynamically symmetric body on a perfectly rough plane by the Kovacic algorithm”, Proc. 8th Eur. Nonlin. Dynam. Conf., 2014, 453–458

[34] Euler J. A., “Recherches plus exactes sur l'effet des moulins á vent”, Mem. Acad. Roy. Sci. Berlin, 12 (1758), 165–234

[35] Euler L., “De minimis oscillationibus corporum tam rigidorum quam flexililium methodus nova et facilis”, Comment. Acad. Sci. Imper. Petropol., 7 (1740), 99–122

[36] Kolchin E. R., Differential Algebra and Algebraic Groups, Academic Press, New York–London, 1973 | MR | Zbl

[37] Korteweg D. J., “Über eine ziemlich verbreitete unrichtige Behandlungsweise eines Problemes der rollenden Bewegung, über die Theorie dieser Bewegung, und ins besondere über kleine rollende Schwingungen um eine Gleichgewichtslage”, Nieuw Archief voor Wiskunde. Tweede Reeks, 4 (1899), 130–155

[38] Kovacic J., “An algorithm for solving second-order linear homogeneous differential equations”, J. Symbol. Comput., 2 (1986), 3–43 | DOI | MR | Zbl

[39] Lindelöf E., “Sur le mouvement d'un corps de revolution roulant sur un plan horisontal”, Acta Soc. Sci. Fennicae., 20:10 (1895), 1–18

[40] Ma D., Liu C., Zhao Z., Zhang H., “Rolling friction and energy dissipation in a spinning disc”, Proc. Roy. Soc. A., 470 (2014)