Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_144_a8, author = {A. Ya. Narmanov and S. S. Saitova}, title = {On the {Geometry} of {Vector} {Fields}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {81--87}, publisher = {mathdoc}, volume = {144}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_144_a8/} }
TY - JOUR AU - A. Ya. Narmanov AU - S. S. Saitova TI - On the Geometry of Vector Fields JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 81 EP - 87 VL - 144 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_144_a8/ LA - ru ID - INTO_2018_144_a8 ER -
A. Ya. Narmanov; S. S. Saitova. On the Geometry of Vector Fields. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Problems of Modern Topology and its Applications», Tome 144 (2018), pp. 81-87. http://geodesic.mathdoc.fr/item/INTO_2018_144_a8/
[1] Azamov A. A., Narmanov A. Ya., “O predelnykh mnozhestvakh orbit sistem vektornykh polei”, Differ. uravn., 40:2 (2004), 257–260 | MR | Zbl
[2] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, v. 1, 2, Nauka, M., 1981 | MR
[3] Narmanov A. Ya., Saitova S., “O geometrii orbit vektornykh polei Killinga”, Differ. uravn., 50:12 (2014), 1582–1589 | DOI | Zbl
[4] Narmanov A. Ya., Saitova S., “O geometrii mnozhestva dostizhimosti vektornykh polei”, Differ. uravn., 53:3 (2017), 321–326 | DOI | Zbl
[5] Narmanov A. Ya., Kasymov O., “O geometrii singulyarnykh rimanovykh sloenii”, Uzbek. mat. zh., 2011, no. 3, 113–121 | MR
[6] Narmanov A. Ya., Kasymov O., “O geometrii rimanovykh sloenii sfer malykh razmernostei”, Dokl. AN RUz, 2013, no. 2, 6–7
[7] Rashevskii P. K., “O soedinimosti lyubykh dvukh tochek vpolne negolonomnogo prostranstva dopustimoi liniei”, Uch. zap. Mosk. ped. in-ta im. K. Libknekhta. Ser. fiz.-mat. nauk, 1938, no. 2, 83–94
[8] Agrachev A. A., Sachkov Y., Control theory from the geometric viewpoint, Springer-Verlag, Berlin, 2004 | MR | Zbl
[9] Chow W. L., “Über Systeme von linearen partiellen Differentialgleinchungen ester Ordnung”, Math. Ann., 1939, no. 117, 98–105 | MR
[10] Hermann R., “The differential geometry of foliations”, J. Math. Mech., 2:11 (1962), 305–315 | MR
[11] R. Hermann, “A sufficient condition that a mapping of Riemannian manifolds be a fiber bundle”, Proc. Am. Math. Soc., 11 (1960), 236–242 | DOI | MR | Zbl
[12] Jurdjevich V., “Attainable sets and controllability: a geometry approach”, Lect. Notes Econ. Math. Syst., 106 (1974), 219–251 | DOI | MR
[13] Levitt N., Sussmann H., “On controllability by means of two vector fields”, SIAM J. Control., 13:6 (1975), 1271–1281 | DOI | MR | Zbl
[14] Nagano T., “Linear differential systems with singularities and application to transitive Lie algebras”, J. Math. Soc. Jpn., 18:4 (1968), 338–404 | MR
[15] O'Neil B., “The fundamental equations of a submersion”, Michigan Math. J., 13 (1966), 459–469 | DOI | MR | Zbl
[16] Stefan P., “Accessible sets, orbits, and foliations with singularities”, Proc. London Math. Soc., 29 (1974), 694–713 | MR
[17] Sussmann H., “Orbits of family of vector fields and integrability of systems with singularities”, Bull. Am. Math. Soc., 79 (1973), 197–199 | DOI | MR | Zbl