On the Geometry of Vector Fields
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Problems of Modern Topology and its Applications», Tome 144 (2018), pp. 81-87

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that the study of the geometry and topology of the attainability set of a family of vector fields is one of the main tasks of the qualitative control theory, which is closely related to the geometry of orbits of vector fields. In this paper, we discuss the authors' results on the geometry of the attainability set of a family of vector fields: the results on the geometry of $T$-attainability sets and the geometry of orbits of Killing vector fields.
Keywords: vector field, attainability set, Killing vector field, Euler characteristic.
Mots-clés : orbit
@article{INTO_2018_144_a8,
     author = {A. Ya. Narmanov and S. S. Saitova},
     title = {On the {Geometry} of {Vector} {Fields}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {81--87},
     publisher = {mathdoc},
     volume = {144},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_144_a8/}
}
TY  - JOUR
AU  - A. Ya. Narmanov
AU  - S. S. Saitova
TI  - On the Geometry of Vector Fields
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 81
EP  - 87
VL  - 144
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_144_a8/
LA  - ru
ID  - INTO_2018_144_a8
ER  - 
%0 Journal Article
%A A. Ya. Narmanov
%A S. S. Saitova
%T On the Geometry of Vector Fields
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 81-87
%V 144
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_144_a8/
%G ru
%F INTO_2018_144_a8
A. Ya. Narmanov; S. S. Saitova. On the Geometry of Vector Fields. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Problems of Modern Topology and its Applications», Tome 144 (2018), pp. 81-87. http://geodesic.mathdoc.fr/item/INTO_2018_144_a8/