Dimension of Extremal Boundary of the Space of Semiadditive Functionals
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Problems of Modern Topology and its Applications», Tome 144 (2018), pp. 74-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, the extremal boundary of the space of weakly additive, order-preserving, normalized, positive-homogeneous, and semiadditive functionals on a compact set is studied. The dimension of the extremal boundary of the convex compact $OS(\mathbf{n})$ is found.
Keywords: weakly additive functional, functor.
Mots-clés : dimension
@article{INTO_2018_144_a7,
     author = {G.F.Djabbarov},
     title = {Dimension of {Extremal} {Boundary} of the {Space} of {Semiadditive} {Functionals}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {74--80},
     publisher = {mathdoc},
     volume = {144},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_144_a7/}
}
TY  - JOUR
AU  - G.F.Djabbarov
TI  - Dimension of Extremal Boundary of the Space of Semiadditive Functionals
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 74
EP  - 80
VL  - 144
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_144_a7/
LA  - ru
ID  - INTO_2018_144_a7
ER  - 
%0 Journal Article
%A G.F.Djabbarov
%T Dimension of Extremal Boundary of the Space of Semiadditive Functionals
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 74-80
%V 144
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_144_a7/
%G ru
%F INTO_2018_144_a7
G.F.Djabbarov. Dimension of Extremal Boundary of the Space of Semiadditive Functionals. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Problems of Modern Topology and its Applications», Tome 144 (2018), pp. 74-80. http://geodesic.mathdoc.fr/item/INTO_2018_144_a7/

[1] Albeverio S., Ayupov Sh. A., Zaitov A. A., “On certain properties of the space of order-preserving functionals”, Topol. Appl., 155 (2008), 1792–1799 | DOI | MR | Zbl

[2] Ayupov Sh. A., Zaitov A. A., “Functor of weakly additive $\tau$-smooth functionals and mappings”, Ukr. J. Math., 61 (2009), 1380–1386 | DOI | MR | Zbl

[3] Bazylevich L., Repovs D., Zarichniy M., “Hyperspace of convex compacta of nonmetrizable compact convex subspaces of locally convex spaces”, Topol. Appl., 155 (2008), 764–772 | DOI | MR

[4] Davletov D. E., Djabbarov G. F., “Functor of semi-additive functionals”, Meth. Funct. Anal. Appl., 14:4 (2008), 317–322 | MR

[5] Djabbarov G. F., “Description of extremal points of the space of weakly additive positively-homogeneous functionals of the two-point set”, Uzbek. Math. J., 2005, no. 3, 17–25 | MR

[6] Djabbarov G. F., “Categorical properties of the functor of weakly additive positively-homogeneous functionals”, Uzbek. Math. J., 2006, no. 2, 20–28 | MR

[7] Djabbarov G. F., “Extreme boundary of the space of semi-additive functionals on three-point set”, Contemp. Math. AMS., 672 (2016), 159–167 | DOI | MR | Zbl

[8] Nadler S. B. Jr., Quinn J., Stravakas N. M., “Hyperspaces of compact convex sets”, Pac. J. Math., 83 (1979), 441–462 | DOI | MR | Zbl

[9] Radul T., “On the functor of order-preserving functionals”, Comment. Math. Univ. Carol., 39:3 (1998), 609–615 | MR | Zbl