Residues and Argument Principle for $A(z)$-Analytic Functions
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Problems of Modern Topology and its Applications», Tome 144 (2018), pp. 56-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we obtain formulas for residues and prove analogs of the argument principle and Rouche theorems for $A(z)$-analytic functions.
Keywords: $A(z)$-analytic function, $A(z)$-lemniscate.
Mots-clés : Cauchy-type kernel
@article{INTO_2018_144_a5,
     author = {Zh. K. Tishabaev and T. U. Otaboev and Sh. Ya. Khursanov},
     title = {Residues and {Argument} {Principle} for $A(z)${-Analytic} {Functions}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {56--64},
     publisher = {mathdoc},
     volume = {144},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_144_a5/}
}
TY  - JOUR
AU  - Zh. K. Tishabaev
AU  - T. U. Otaboev
AU  - Sh. Ya. Khursanov
TI  - Residues and Argument Principle for $A(z)$-Analytic Functions
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 56
EP  - 64
VL  - 144
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_144_a5/
LA  - ru
ID  - INTO_2018_144_a5
ER  - 
%0 Journal Article
%A Zh. K. Tishabaev
%A T. U. Otaboev
%A Sh. Ya. Khursanov
%T Residues and Argument Principle for $A(z)$-Analytic Functions
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 56-64
%V 144
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_144_a5/
%G ru
%F INTO_2018_144_a5
Zh. K. Tishabaev; T. U. Otaboev; Sh. Ya. Khursanov. Residues and Argument Principle for $A(z)$-Analytic Functions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Problems of Modern Topology and its Applications», Tome 144 (2018), pp. 56-64. http://geodesic.mathdoc.fr/item/INTO_2018_144_a5/

[1] Bukhgeim A. L, Formuly obrascheniya v obratnykh zadachakh, Nauka, M., 1991 | MR

[2] Bukhgeim A. L., Kazantsev S. G., “Ellipticheskie sistemy tipa Beltrami i zadachi tomografii”, Dokl. AN SSSR, 315:1 (1990), 15–19

[3] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988

[4] Zhabborov N. M., Imomnazarov Kh. Kh., Nekotorye nachalno-kraevye zadachi mekhaniki dvukhskorostnykh sred, Izd-vo NUUz im. M. Ulugbeka, Tashkent, 2012

[5] Zhabborov N. M., Otaboev T. U., “Teorema Koshi dlya $A(z)$-analiticheskikh funktsii”, Uzbek. mat. zh., 2014, no. 1, 15–18 | MR

[6] Zhabborov N. M., Otaboev T. U., “Analog integralnoi formuly Koshi dlya $A$-analiticheskikh funktsii”, Uzbek. mat. zh., 2016, no. 4, 50–59 | MR

[7] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Fizmatgiz, M., 1958 | MR

[8] Ahlfors L., Lectures on quasiconformal mappings, Van Nostrand, New York, 1966 | MR | Zbl

[9] Gutlyanski V., Ryazanov V., Srebro U., Yakubov E., The Beltrami equation: A geometric approach, Springer-Verlag, 2011 | MR

[10] Sadullaev A., Jabborov N. M., “On a class of $A$-analytic functions”, J. Sib. Federal Univ. Math. Phys., 3:9 (2016), 374–383 | DOI | MR