Asymptotic Properties of Bayesian-type Estimates in the Competing Risk Model under Random Censoring
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Problems of Modern Topology and its Applications», Tome 144 (2018), pp. 47-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the asymptotic normality of Bayesian-type estimates in the competing risk model with two-sided random censoring.
Keywords: local asymptotic normality, likelihood ratio statistic, asymptotic efficiency, competing risk model, random censoring.
@article{INTO_2018_144_a4,
     author = {A. A. Abdushukurov and N. S. Nurmuhamedova},
     title = {Asymptotic {Properties} of {Bayesian-type} {Estimates} in the {Competing} {Risk} {Model} under {Random} {Censoring}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {47--55},
     publisher = {mathdoc},
     volume = {144},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_144_a4/}
}
TY  - JOUR
AU  - A. A. Abdushukurov
AU  - N. S. Nurmuhamedova
TI  - Asymptotic Properties of Bayesian-type Estimates in the Competing Risk Model under Random Censoring
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 47
EP  - 55
VL  - 144
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_144_a4/
LA  - ru
ID  - INTO_2018_144_a4
ER  - 
%0 Journal Article
%A A. A. Abdushukurov
%A N. S. Nurmuhamedova
%T Asymptotic Properties of Bayesian-type Estimates in the Competing Risk Model under Random Censoring
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 47-55
%V 144
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_144_a4/
%G ru
%F INTO_2018_144_a4
A. A. Abdushukurov; N. S. Nurmuhamedova. Asymptotic Properties of Bayesian-type Estimates in the Competing Risk Model under Random Censoring. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Problems of Modern Topology and its Applications», Tome 144 (2018), pp. 47-55. http://geodesic.mathdoc.fr/item/INTO_2018_144_a4/

[1] Abdushukurov A. A., Statistika nepolnykh nablyudenii, Universitet, Tashkent, 2009

[2] Abdushukurov A. A., Nurmukhamedova N. S., “Lokalnaya asimptoticheskaya normalnost v modeli konkuriruyuschikh riskov”, Uzbek. mat. zh., 2012, no. 2, 5–12

[3] Gikhman I. I., Skorokhod A. V., Vvedenie v teoriyu sluchainykh protsessov, Nauka, M., 1977 | MR

[4] Ibragimov I. A., Khasminskii R. Z., Asimptoticheskaya teoriya otsenivaniya, Nauka, M., 1979 | MR

[5] Rusas Dzh., Kontinualnost veroyatnostnykh mer, Mir, M., 1975

[6] Abdushukurov A. A., Nurmuhamedova N. S., “Local approximate normality of likelihood ratio statistics in competing ricks model under random censorship fromboth sides”, Far East J. Theor. Stat., 42:2 (2013), 107–122 | MR | Zbl

[7] Hajek J., “Local asymptotic minimax and admissibility in estimation”, Proc. 6th Berkeley Symp. on Math. Statist. Prob., 1 (1972), 175–194 | MR | Zbl

[8] Le Cam L., “On some asymptotic properties of the maximum likelihood estimates and related Bayes estimates”, Univ. California Publ. Statist., 1 (1953), 277–330 | MR | Zbl

[9] Van der Vaart A. W., Asymptotic statistics, Cambridge Univ. Press, 1998 | MR | Zbl

[10] Wald A., “Tests of statistical hypothesis concerning several parameters, when the number of observations is large”, Trans. Am. Math. Soc., 54 (1943), 426–482 | DOI | MR | Zbl