On Certain Cardinal Properties of the $N_{\tau}^{\varphi}$-Kernel of a Space $X$
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Problems of Modern Topology and its Applications», Tome 144 (2018), pp. 117-121
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we examine certain cardinal properties of subspaces $N_{\tau}^{\varphi}X$ of the space $NX$ of complete coupled systems of a topological space $X$.
Keywords:
density, weight, complete coupled system.
@article{INTO_2018_144_a13,
author = {F. G. Mukhamadiev},
title = {On {Certain} {Cardinal} {Properties} of the $N_{\tau}^{\varphi}${-Kernel} of a {Space~}$X$},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {117--121},
year = {2018},
volume = {144},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2018_144_a13/}
}
TY - JOUR
AU - F. G. Mukhamadiev
TI - On Certain Cardinal Properties of the $N_{\tau}^{\varphi}$-Kernel of a Space $X$
JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY - 2018
SP - 117
EP - 121
VL - 144
UR - http://geodesic.mathdoc.fr/item/INTO_2018_144_a13/
LA - ru
ID - INTO_2018_144_a13
ER -
%0 Journal Article
%A F. G. Mukhamadiev
%T On Certain Cardinal Properties of the $N_{\tau}^{\varphi}$-Kernel of a Space $X$
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 117-121
%V 144
%U http://geodesic.mathdoc.fr/item/INTO_2018_144_a13/
%G ru
%F INTO_2018_144_a13
F. G. Mukhamadiev. On Certain Cardinal Properties of the $N_{\tau}^{\varphi}$-Kernel of a Space $X$. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Problems of Modern Topology and its Applications», Tome 144 (2018), pp. 117-121. http://geodesic.mathdoc.fr/item/INTO_2018_144_a13/
[1] Ivanov A. V., Kardinalnoznachnye invarianty i funktory v kategorii bikompaktov, Diss. na soisk. uch. step. dokt. fiz.-mat. nauk, Petrozavodsk, 1985
[2] Makhmud T., “O kardinalnykh invariantakh prostranstv stseplennykh sistem”, Vestn. MGU. Ser. 1. Mat. Mekh., 1995, no. 4, 14–19
[3] Fedorchuk V. V., Filippov V. V., Obschaya topologiya. Osnovnye konstruktsii, MGU, M., 2006
[4] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR
[5] Juhasz I., Cardinal functions in topology. Ten years later, Math. Centre Tracts, 123, Math. Centrum, Amsterdam, 1980 | MR | Zbl
[6] Van Mill J., Supercompactness and Wallman spaces, Math. Centre Tracts, 85, Math. Centrum, Amsterdam, 1977 | MR | Zbl