Categorical and Cardinal Properties of Hyperspaces with a Finite Number of Components
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Problems of Modern Topology and its Applications», Tome 144 (2018), pp. 96-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine categorical and cardinal properties of hyperspaces with finite number of components. We prove that the functor $C_{n}:\operatorname{Comp} \to \operatorname{Comp}$ is not normal, i.e., it does not preserve epimorphisms of continuous mappings. We also discuss the density, the caliber, and the Shanin number of the space $C_{n}(X)$.
Keywords: category, functor, hyperspace, connected component, density, caliber.
@article{INTO_2018_144_a10,
     author = {R. B. Beshimov and N. K. Mamadaliev and Sh. Kh. Eshtemirova},
     title = {Categorical and {Cardinal} {Properties} of {Hyperspaces} with a {Finite} {Number} of {Components}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {96--103},
     publisher = {mathdoc},
     volume = {144},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_144_a10/}
}
TY  - JOUR
AU  - R. B. Beshimov
AU  - N. K. Mamadaliev
AU  - Sh. Kh. Eshtemirova
TI  - Categorical and Cardinal Properties of Hyperspaces with a Finite Number of Components
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 96
EP  - 103
VL  - 144
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_144_a10/
LA  - ru
ID  - INTO_2018_144_a10
ER  - 
%0 Journal Article
%A R. B. Beshimov
%A N. K. Mamadaliev
%A Sh. Kh. Eshtemirova
%T Categorical and Cardinal Properties of Hyperspaces with a Finite Number of Components
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 96-103
%V 144
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_144_a10/
%G ru
%F INTO_2018_144_a10
R. B. Beshimov; N. K. Mamadaliev; Sh. Kh. Eshtemirova. Categorical and Cardinal Properties of Hyperspaces with a Finite Number of Components. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Problems of Modern Topology and its Applications», Tome 144 (2018), pp. 96-103. http://geodesic.mathdoc.fr/item/INTO_2018_144_a10/

[1] Beshimov R. B., “Slabaya plotnost i giperprostranstva”, Uzbek. mat. zh., 2000, no. 4, 3–7

[2] Fedorchuk V. V., Filippov V. V., Obschaya topologiya. Osnovnye konstruktsii, M., 2014

[3] Schepin E. V., “Funktory i neschetnye stepeni kompaktov”, Usp. mat. nauk, 36:3 (1981), 3–62 | MR

[4] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR

[5] Alexandroff P. S., Urysohn P. S., “Memoire sur les espaces topologiques compacts”, Verh. Akad. Wetensch. Amsterdam, 1929, no. 14

[6] Beshimov R. B., “A note on weakly separable spaces”, Math. Moravica, 6 (2002), 9–19 | DOI | MR | Zbl

[7] Beshimov R. B., “Some cardinal properties of topological spaces connected with weakly density”, Meth. Funct. Anal. Topol., 10:3 (2004), 17–22 | MR | Zbl

[8] Camargo J., Macias S., “Quotients of $n$-fold hyperspaces”, Topology Appl., 197 (2016), 154–166 | DOI | MR | Zbl

[9] Hattory Y., “Order and topological structures of posets of the formal balls on metric spaces”, Mem. Fac. Sci. Eng. Shimane Univ. Ser. B. Math. Sci., 43 (2010), 13–26 | MR

[10] Macias S., “On $n$-fold hyperspaces of a continua”, Glas. Mat., 64:44 (2009), 479–492 | DOI | MR

[11] Sorgenfrey R. H., “On the topological product of paracompact spaces”, Bull. Am. Math. Soc., 53 (1947), 631–632 | DOI | MR | Zbl