Equivalence of Paths in Galilean Geometry
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Problems of Modern Topology and its Applications», Tome 144 (2018), pp. 3-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An explicit description of finite transcendence bases in differential fields of differential rational functions that are invariant under the action of Galilean transformation group in a real finite-dimensional space is presented. Necessary and sufficient conditions of the equivalence of paths in the $n$-dimensional Galilean space are obtained.
Keywords: Galilean space, differential invariant, transcendence basis, path in a finite-dimensional space.
@article{INTO_2018_144_a0,
     author = {V. I. Chilin and K. K. Muminov},
     title = {Equivalence of {Paths} in {Galilean} {Geometry}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--16},
     year = {2018},
     volume = {144},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_144_a0/}
}
TY  - JOUR
AU  - V. I. Chilin
AU  - K. K. Muminov
TI  - Equivalence of Paths in Galilean Geometry
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 3
EP  - 16
VL  - 144
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_144_a0/
LA  - ru
ID  - INTO_2018_144_a0
ER  - 
%0 Journal Article
%A V. I. Chilin
%A K. K. Muminov
%T Equivalence of Paths in Galilean Geometry
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 3-16
%V 144
%U http://geodesic.mathdoc.fr/item/INTO_2018_144_a0/
%G ru
%F INTO_2018_144_a0
V. I. Chilin; K. K. Muminov. Equivalence of Paths in Galilean Geometry. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Problems of Modern Topology and its Applications», Tome 144 (2018), pp. 3-16. http://geodesic.mathdoc.fr/item/INTO_2018_144_a0/

[1] Aleksandrov P. S., Kurs analiticheskoi geometrii i lineinoi algebry, Nauka, M., 1979 | MR

[2] Aminov Yu. A., Differentsialnaya geometriya i topologiya, Nauka, M., 1987

[3] Aripov R. G., Khadzhiev Dzh., “Polnaya sistema globalnykh differentsialnykh i integralnykh invariantov krivoi v evklidovoi geometrii”, Izv. vuzov. Mat., 542:7 (2007), 1–14

[4] Blyashke V., Differentsialnaya geometriya i geometricheskie osnovy teorii otnositelnosti Einshteina, ONTI, M.-L., 1935

[5] Veil G., Izbrannye trudy. Matematika. Teoreticheskaya fizika, Nauka, M., 1984

[6] Vinberg E. B., Popov V. L., “Teoriya invariantov”, Itogi nauki i tekhn. Sovr. probl. mat. Fundam. napr., 55 (1998), 137–309

[7] Gilbert D., Izbrannye trudy. Teoriya invariantov. Teoriya chisel. Algebra. Geometriya. Osnovaniya matematiki, Faktorial, M., 1998

[8] Kartan E., Teoriya konechnykh nepreryvnykh grupp i differentsialnaya geometriya, izlozhennaya metodom podvizhnogo repera, PLATON, Volgograd, 1998

[9] Kartan E., Izbrannye trudy, MTsNMO, M., 1998

[10] Muminov K. K., “Ekvivalentnost putei otnositelno deistviya simplekticheskoi gruppy”, Izv. vuzov. Mat., 2002, no. 7, 27–38 | Zbl

[11] Muminov K. K., Chilin V. I., Ekvivalentnost krivykh v konechnomernykh prostranstvakh, Lambert Academic Publ., 2015

[12] Rozenfeld B. A., Neevklidovy prostranstva, Nauka, M., 1969

[13] Khadzhiev Dzh., Prilozhenie teorii invariantov k differentsialnoi geometrii krivykh, FAN, Tashkent, 1988 | MR

[14] Chilin V. I., Muminov K. K., “Polnaya sistema differentsialnykh invariantov krivoi v psevdoevklidovom prostranstve”, Dinam. sist., 31:3 (2013), 135–149 | Zbl

[15] Shirokov P. A., Shirokov A. P., Affinnaya differentsialnaya geometriya, Fizmatlit, M., 1959

[16] Yaglom I. M., “Kvadratichnye i kososimmetricheskie bilineinye formy v veschestvennom simplekticheskom prostranstve”, Tr. semin. vekt. tenz. anal., 8 (1950), 119–138

[17] Yaglom I. M., “Krivye v simplekticheskom prostranstve”, Tr. semin. vekt. tenz. anal., 10 (1956), 119–137 | MR | Zbl

[18] Diedonne J. A., Carrell J. B., Invariant theory, Academic Press, N.Y.-London, 1971 | MR

[19] Kaplansky I., An introduction to differential algebra, Hermann, Paris, 1957 | MR | Zbl

[20] Khadjiev Dj., Peksen O., “The complete system of global integral and differential invariants for equiaffine curves”, Diff. Geom. Appl., 20 (2004), 167–175 | DOI | MR | Zbl

[21] Kolchin E. R., Differential algebra and algebraic groups, Academic Press, N.Y.–London, 1973 | MR | Zbl

[22] Kraft H., Geometrische Methoden in der Invariantentheorie, Vieweg, Braunschweig Wiesbaden, 1985 | MR | Zbl

[23] Mumford D., Geometric invariant theory, Springer-Verlag, Berlin, 1965 | MR | Zbl

[24] Mumford D., Fogarty J., Geometric invariant theory, Springer-Verlag, Berlin, 1982 | MR | Zbl

[25] Nagata M., “On the Fourteenth problem of Hilbert”, Lect. Tata Inst. Fundam. Res., Bombay, 1963 | MR

[26] Pommaret J. F., Differential Galois theory, Gordon and Breach, N.Y., 1983 | MR | Zbl

[27] Weyl H., The classical groups. Their invariants and representations, Princeton Univ. Press, 1997 | MR | Zbl