Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_144_a0, author = {V. I. Chilin and K. K. Muminov}, title = {Equivalence of {Paths} in {Galilean} {Geometry}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {3--16}, publisher = {mathdoc}, volume = {144}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_144_a0/} }
TY - JOUR AU - V. I. Chilin AU - K. K. Muminov TI - Equivalence of Paths in Galilean Geometry JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 3 EP - 16 VL - 144 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_144_a0/ LA - ru ID - INTO_2018_144_a0 ER -
V. I. Chilin; K. K. Muminov. Equivalence of Paths in Galilean Geometry. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Problems of Modern Topology and its Applications», Tome 144 (2018), pp. 3-16. http://geodesic.mathdoc.fr/item/INTO_2018_144_a0/
[1] Aleksandrov P. S., Kurs analiticheskoi geometrii i lineinoi algebry, Nauka, M., 1979 | MR
[2] Aminov Yu. A., Differentsialnaya geometriya i topologiya, Nauka, M., 1987
[3] Aripov R. G., Khadzhiev Dzh., “Polnaya sistema globalnykh differentsialnykh i integralnykh invariantov krivoi v evklidovoi geometrii”, Izv. vuzov. Mat., 542:7 (2007), 1–14
[4] Blyashke V., Differentsialnaya geometriya i geometricheskie osnovy teorii otnositelnosti Einshteina, ONTI, M.-L., 1935
[5] Veil G., Izbrannye trudy. Matematika. Teoreticheskaya fizika, Nauka, M., 1984
[6] Vinberg E. B., Popov V. L., “Teoriya invariantov”, Itogi nauki i tekhn. Sovr. probl. mat. Fundam. napr., 55 (1998), 137–309
[7] Gilbert D., Izbrannye trudy. Teoriya invariantov. Teoriya chisel. Algebra. Geometriya. Osnovaniya matematiki, Faktorial, M., 1998
[8] Kartan E., Teoriya konechnykh nepreryvnykh grupp i differentsialnaya geometriya, izlozhennaya metodom podvizhnogo repera, PLATON, Volgograd, 1998
[9] Kartan E., Izbrannye trudy, MTsNMO, M., 1998
[10] Muminov K. K., “Ekvivalentnost putei otnositelno deistviya simplekticheskoi gruppy”, Izv. vuzov. Mat., 2002, no. 7, 27–38 | Zbl
[11] Muminov K. K., Chilin V. I., Ekvivalentnost krivykh v konechnomernykh prostranstvakh, Lambert Academic Publ., 2015
[12] Rozenfeld B. A., Neevklidovy prostranstva, Nauka, M., 1969
[13] Khadzhiev Dzh., Prilozhenie teorii invariantov k differentsialnoi geometrii krivykh, FAN, Tashkent, 1988 | MR
[14] Chilin V. I., Muminov K. K., “Polnaya sistema differentsialnykh invariantov krivoi v psevdoevklidovom prostranstve”, Dinam. sist., 31:3 (2013), 135–149 | Zbl
[15] Shirokov P. A., Shirokov A. P., Affinnaya differentsialnaya geometriya, Fizmatlit, M., 1959
[16] Yaglom I. M., “Kvadratichnye i kososimmetricheskie bilineinye formy v veschestvennom simplekticheskom prostranstve”, Tr. semin. vekt. tenz. anal., 8 (1950), 119–138
[17] Yaglom I. M., “Krivye v simplekticheskom prostranstve”, Tr. semin. vekt. tenz. anal., 10 (1956), 119–137 | MR | Zbl
[18] Diedonne J. A., Carrell J. B., Invariant theory, Academic Press, N.Y.-London, 1971 | MR
[19] Kaplansky I., An introduction to differential algebra, Hermann, Paris, 1957 | MR | Zbl
[20] Khadjiev Dj., Peksen O., “The complete system of global integral and differential invariants for equiaffine curves”, Diff. Geom. Appl., 20 (2004), 167–175 | DOI | MR | Zbl
[21] Kolchin E. R., Differential algebra and algebraic groups, Academic Press, N.Y.–London, 1973 | MR | Zbl
[22] Kraft H., Geometrische Methoden in der Invariantentheorie, Vieweg, Braunschweig Wiesbaden, 1985 | MR | Zbl
[23] Mumford D., Geometric invariant theory, Springer-Verlag, Berlin, 1965 | MR | Zbl
[24] Mumford D., Fogarty J., Geometric invariant theory, Springer-Verlag, Berlin, 1982 | MR | Zbl
[25] Nagata M., “On the Fourteenth problem of Hilbert”, Lect. Tata Inst. Fundam. Res., Bombay, 1963 | MR
[26] Pommaret J. F., Differential Galois theory, Gordon and Breach, N.Y., 1983 | MR | Zbl
[27] Weyl H., The classical groups. Their invariants and representations, Princeton Univ. Press, 1997 | MR | Zbl