Equivalence of Paths in Galilean Geometry
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Problems of Modern Topology and its Applications», Tome 144 (2018), pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

An explicit description of finite transcendence bases in differential fields of differential rational functions that are invariant under the action of Galilean transformation group in a real finite-dimensional space is presented. Necessary and sufficient conditions of the equivalence of paths in the $n$-dimensional Galilean space are obtained.
Keywords: Galilean space, differential invariant, transcendence basis, path in a finite-dimensional space.
@article{INTO_2018_144_a0,
     author = {V. I. Chilin and K. K. Muminov},
     title = {Equivalence of {Paths} in {Galilean} {Geometry}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {144},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_144_a0/}
}
TY  - JOUR
AU  - V. I. Chilin
AU  - K. K. Muminov
TI  - Equivalence of Paths in Galilean Geometry
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 3
EP  - 16
VL  - 144
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_144_a0/
LA  - ru
ID  - INTO_2018_144_a0
ER  - 
%0 Journal Article
%A V. I. Chilin
%A K. K. Muminov
%T Equivalence of Paths in Galilean Geometry
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 3-16
%V 144
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_144_a0/
%G ru
%F INTO_2018_144_a0
V. I. Chilin; K. K. Muminov. Equivalence of Paths in Galilean Geometry. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Problems of Modern Topology and its Applications», Tome 144 (2018), pp. 3-16. http://geodesic.mathdoc.fr/item/INTO_2018_144_a0/

[1] Aleksandrov P. S., Kurs analiticheskoi geometrii i lineinoi algebry, Nauka, M., 1979 | MR

[2] Aminov Yu. A., Differentsialnaya geometriya i topologiya, Nauka, M., 1987

[3] Aripov R. G., Khadzhiev Dzh., “Polnaya sistema globalnykh differentsialnykh i integralnykh invariantov krivoi v evklidovoi geometrii”, Izv. vuzov. Mat., 542:7 (2007), 1–14

[4] Blyashke V., Differentsialnaya geometriya i geometricheskie osnovy teorii otnositelnosti Einshteina, ONTI, M.-L., 1935

[5] Veil G., Izbrannye trudy. Matematika. Teoreticheskaya fizika, Nauka, M., 1984

[6] Vinberg E. B., Popov V. L., “Teoriya invariantov”, Itogi nauki i tekhn. Sovr. probl. mat. Fundam. napr., 55 (1998), 137–309

[7] Gilbert D., Izbrannye trudy. Teoriya invariantov. Teoriya chisel. Algebra. Geometriya. Osnovaniya matematiki, Faktorial, M., 1998

[8] Kartan E., Teoriya konechnykh nepreryvnykh grupp i differentsialnaya geometriya, izlozhennaya metodom podvizhnogo repera, PLATON, Volgograd, 1998

[9] Kartan E., Izbrannye trudy, MTsNMO, M., 1998

[10] Muminov K. K., “Ekvivalentnost putei otnositelno deistviya simplekticheskoi gruppy”, Izv. vuzov. Mat., 2002, no. 7, 27–38 | Zbl

[11] Muminov K. K., Chilin V. I., Ekvivalentnost krivykh v konechnomernykh prostranstvakh, Lambert Academic Publ., 2015

[12] Rozenfeld B. A., Neevklidovy prostranstva, Nauka, M., 1969

[13] Khadzhiev Dzh., Prilozhenie teorii invariantov k differentsialnoi geometrii krivykh, FAN, Tashkent, 1988 | MR

[14] Chilin V. I., Muminov K. K., “Polnaya sistema differentsialnykh invariantov krivoi v psevdoevklidovom prostranstve”, Dinam. sist., 31:3 (2013), 135–149 | Zbl

[15] Shirokov P. A., Shirokov A. P., Affinnaya differentsialnaya geometriya, Fizmatlit, M., 1959

[16] Yaglom I. M., “Kvadratichnye i kososimmetricheskie bilineinye formy v veschestvennom simplekticheskom prostranstve”, Tr. semin. vekt. tenz. anal., 8 (1950), 119–138

[17] Yaglom I. M., “Krivye v simplekticheskom prostranstve”, Tr. semin. vekt. tenz. anal., 10 (1956), 119–137 | MR | Zbl

[18] Diedonne J. A., Carrell J. B., Invariant theory, Academic Press, N.Y.-London, 1971 | MR

[19] Kaplansky I., An introduction to differential algebra, Hermann, Paris, 1957 | MR | Zbl

[20] Khadjiev Dj., Peksen O., “The complete system of global integral and differential invariants for equiaffine curves”, Diff. Geom. Appl., 20 (2004), 167–175 | DOI | MR | Zbl

[21] Kolchin E. R., Differential algebra and algebraic groups, Academic Press, N.Y.–London, 1973 | MR | Zbl

[22] Kraft H., Geometrische Methoden in der Invariantentheorie, Vieweg, Braunschweig Wiesbaden, 1985 | MR | Zbl

[23] Mumford D., Geometric invariant theory, Springer-Verlag, Berlin, 1965 | MR | Zbl

[24] Mumford D., Fogarty J., Geometric invariant theory, Springer-Verlag, Berlin, 1982 | MR | Zbl

[25] Nagata M., “On the Fourteenth problem of Hilbert”, Lect. Tata Inst. Fundam. Res., Bombay, 1963 | MR

[26] Pommaret J. F., Differential Galois theory, Gordon and Breach, N.Y., 1983 | MR | Zbl

[27] Weyl H., The classical groups. Their invariants and representations, Princeton Univ. Press, 1997 | MR | Zbl