Multiple discriminants and extreme values of polynomials of several variables
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Mathematical analysis, Tome 143 (2017), pp. 87-94 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An extreme value of a function is the value of the function at one of its extremum points. Each extremum point of a differentiable function of several variables is described by the system of equations expressing the vanishing of all partial derivatives. However, in the general case, one cannot obtain equations for extreme values of the function. The case of polynomials significantly differs from the general case, and in this paper we obtain an equation for extreme values of a given polynomial of several variables.
Mots-clés : polynomial, discriminant
Keywords: extremum point, extreme value.
@article{INTO_2017_143_a6,
     author = {R. A. Sharipov},
     title = {Multiple discriminants and extreme values of polynomials of several variables},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {87--94},
     year = {2017},
     volume = {143},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2017_143_a6/}
}
TY  - JOUR
AU  - R. A. Sharipov
TI  - Multiple discriminants and extreme values of polynomials of several variables
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2017
SP  - 87
EP  - 94
VL  - 143
UR  - http://geodesic.mathdoc.fr/item/INTO_2017_143_a6/
LA  - ru
ID  - INTO_2017_143_a6
ER  - 
%0 Journal Article
%A R. A. Sharipov
%T Multiple discriminants and extreme values of polynomials of several variables
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2017
%P 87-94
%V 143
%U http://geodesic.mathdoc.fr/item/INTO_2017_143_a6/
%G ru
%F INTO_2017_143_a6
R. A. Sharipov. Multiple discriminants and extreme values of polynomials of several variables. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Mathematical analysis, Tome 143 (2017), pp. 87-94. http://geodesic.mathdoc.fr/item/INTO_2017_143_a6/