Approximation of infinitely differentiable functions in unbounded convex domains by polynomials in weighted spaces
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Mathematical analysis, Tome 143 (2017), pp. 40-47
Cet article a éte moissonné depuis la source Math-Net.Ru
We examine the problem of polynomial approximation in the space of infinitely differentiable functions in an unbounded convex domain in ${\mathbb R}^n$ that have a prescribed growth rate near the boundary of the domain and at infinity.
Keywords:
approximation by polynomials, infinitely differentiable function.
@article{INTO_2017_143_a2,
author = {I. Kh. Musin},
title = {Approximation of infinitely differentiable functions in unbounded convex domains by polynomials in weighted spaces},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {40--47},
year = {2017},
volume = {143},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2017_143_a2/}
}
TY - JOUR AU - I. Kh. Musin TI - Approximation of infinitely differentiable functions in unbounded convex domains by polynomials in weighted spaces JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2017 SP - 40 EP - 47 VL - 143 UR - http://geodesic.mathdoc.fr/item/INTO_2017_143_a2/ LA - ru ID - INTO_2017_143_a2 ER -
%0 Journal Article %A I. Kh. Musin %T Approximation of infinitely differentiable functions in unbounded convex domains by polynomials in weighted spaces %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2017 %P 40-47 %V 143 %U http://geodesic.mathdoc.fr/item/INTO_2017_143_a2/ %G ru %F INTO_2017_143_a2
I. Kh. Musin. Approximation of infinitely differentiable functions in unbounded convex domains by polynomials in weighted spaces. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Mathematical analysis, Tome 143 (2017), pp. 40-47. http://geodesic.mathdoc.fr/item/INTO_2017_143_a2/