On invariant subspaces of the Pommiez operator in spaces of entire functions of exponential type
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex analysis, Tome 142 (2017), pp. 111-120
Cet article a éte moissonné depuis la source Math-Net.Ru
We describe closed invariant eigenspaces of the Pommmiez operator in the (LF)-space of entire functions of exponential type. This space is topologically equivalent (by means of the Laplace transform) to the strong dual space of all germs of functions that are analytic on a convex, locally closed subset of the complex plane.
Keywords:
invariant subspace, Pommiez operator, entire function of exponential type.
@article{INTO_2017_142_a9,
author = {O. A. Ivanova and S. N. Melikhov},
title = {On invariant subspaces of the {Pommiez} operator in spaces of entire functions of exponential type},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {111--120},
year = {2017},
volume = {142},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2017_142_a9/}
}
TY - JOUR AU - O. A. Ivanova AU - S. N. Melikhov TI - On invariant subspaces of the Pommiez operator in spaces of entire functions of exponential type JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2017 SP - 111 EP - 120 VL - 142 UR - http://geodesic.mathdoc.fr/item/INTO_2017_142_a9/ LA - ru ID - INTO_2017_142_a9 ER -
%0 Journal Article %A O. A. Ivanova %A S. N. Melikhov %T On invariant subspaces of the Pommiez operator in spaces of entire functions of exponential type %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2017 %P 111-120 %V 142 %U http://geodesic.mathdoc.fr/item/INTO_2017_142_a9/ %G ru %F INTO_2017_142_a9
O. A. Ivanova; S. N. Melikhov. On invariant subspaces of the Pommiez operator in spaces of entire functions of exponential type. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex analysis, Tome 142 (2017), pp. 111-120. http://geodesic.mathdoc.fr/item/INTO_2017_142_a9/