On the separation property of the Sturm–Liouville operator in weighted spaces of multiplicators
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Spectral theory, Tome 141 (2017), pp. 86-94 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, we prove the separation theorem for the Sturm–Liouville operator in terms of point multiplicators in weighted Sobolev spaces. The research method is based on local estimates on intervals of characteristic length.
Keywords: separation property, differential operator, multiplicator, weighted space.
@article{INTO_2017_141_a6,
     author = {A. Kasym and L. K. Kusainova},
     title = {On the separation property of the {Sturm{\textendash}Liouville} operator in weighted spaces of multiplicators},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {86--94},
     year = {2017},
     volume = {141},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2017_141_a6/}
}
TY  - JOUR
AU  - A. Kasym
AU  - L. K. Kusainova
TI  - On the separation property of the Sturm–Liouville operator in weighted spaces of multiplicators
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2017
SP  - 86
EP  - 94
VL  - 141
UR  - http://geodesic.mathdoc.fr/item/INTO_2017_141_a6/
LA  - ru
ID  - INTO_2017_141_a6
ER  - 
%0 Journal Article
%A A. Kasym
%A L. K. Kusainova
%T On the separation property of the Sturm–Liouville operator in weighted spaces of multiplicators
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2017
%P 86-94
%V 141
%U http://geodesic.mathdoc.fr/item/INTO_2017_141_a6/
%G ru
%F INTO_2017_141_a6
A. Kasym; L. K. Kusainova. On the separation property of the Sturm–Liouville operator in weighted spaces of multiplicators. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Spectral theory, Tome 141 (2017), pp. 86-94. http://geodesic.mathdoc.fr/item/INTO_2017_141_a6/