On the localization conditions for the spectrum of a non-self-adjoint Sturm–Liouville operator with slowly growing potential
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Spectral theory, Tome 141 (2017), pp. 48-60
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the Sturm–Liouville operator $T_0$ on the semi-axis $(0,+\infty)$ with the potential $e^{i\theta}q$, where $0<\theta<\pi$ and $q$ is a real-valued function that can have arbitrarily slow growth at infinity. This operator does not meet any condition of the Keldysh theorem: $T_0$ is non-self-adjoint and its resolvent does not belong to the Neumann–Schatten class $\mathfrak{S}_p$ for any $p<\infty$. We find conditions for $q$ and perturbations of $V$ under which the localization or the asymptotics of its spectrum is preserved.
Keywords:
non-self-adjoint differential operator, Keldysh theorem, spectral stability, localization of spectrum.
@article{INTO_2017_141_a3,
author = {L. G. Valiullina and Kh. K. Ishkin},
title = {On the localization conditions for the spectrum of a non-self-adjoint {Sturm{\textendash}Liouville} operator with slowly growing potential},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {48--60},
year = {2017},
volume = {141},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2017_141_a3/}
}
TY - JOUR AU - L. G. Valiullina AU - Kh. K. Ishkin TI - On the localization conditions for the spectrum of a non-self-adjoint Sturm–Liouville operator with slowly growing potential JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2017 SP - 48 EP - 60 VL - 141 UR - http://geodesic.mathdoc.fr/item/INTO_2017_141_a3/ LA - ru ID - INTO_2017_141_a3 ER -
%0 Journal Article %A L. G. Valiullina %A Kh. K. Ishkin %T On the localization conditions for the spectrum of a non-self-adjoint Sturm–Liouville operator with slowly growing potential %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2017 %P 48-60 %V 141 %U http://geodesic.mathdoc.fr/item/INTO_2017_141_a3/ %G ru %F INTO_2017_141_a3
L. G. Valiullina; Kh. K. Ishkin. On the localization conditions for the spectrum of a non-self-adjoint Sturm–Liouville operator with slowly growing potential. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Spectral theory, Tome 141 (2017), pp. 48-60. http://geodesic.mathdoc.fr/item/INTO_2017_141_a3/