On the localization conditions for the spectrum of a non-self-adjoint Sturm--Liouville operator with slowly growing potential
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Spectral theory, Tome 141 (2017), pp. 48-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Sturm–Liouville operator $T_0$ on the semi-axis $(0,+\infty)$ with the potential $e^{i\theta}q$, where $0\theta\pi$ and $q$ is a real-valued function that can have arbitrarily slow growth at infinity. This operator does not meet any condition of the Keldysh theorem: $T_0$ is non-self-adjoint and its resolvent does not belong to the Neumann–Schatten class $\mathfrak{S}_p$ for any $p\infty$. We find conditions for $q$ and perturbations of $V$ under which the localization or the asymptotics of its spectrum is preserved.
Keywords: non-self-adjoint differential operator, Keldysh theorem, spectral stability, localization of spectrum.
@article{INTO_2017_141_a3,
     author = {L. G. Valiullina and Kh. K. Ishkin},
     title = {On the localization conditions for the spectrum of a non-self-adjoint {Sturm--Liouville} operator with slowly growing potential},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {48--60},
     publisher = {mathdoc},
     volume = {141},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2017_141_a3/}
}
TY  - JOUR
AU  - L. G. Valiullina
AU  - Kh. K. Ishkin
TI  - On the localization conditions for the spectrum of a non-self-adjoint Sturm--Liouville operator with slowly growing potential
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2017
SP  - 48
EP  - 60
VL  - 141
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2017_141_a3/
LA  - ru
ID  - INTO_2017_141_a3
ER  - 
%0 Journal Article
%A L. G. Valiullina
%A Kh. K. Ishkin
%T On the localization conditions for the spectrum of a non-self-adjoint Sturm--Liouville operator with slowly growing potential
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2017
%P 48-60
%V 141
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2017_141_a3/
%G ru
%F INTO_2017_141_a3
L. G. Valiullina; Kh. K. Ishkin. On the localization conditions for the spectrum of a non-self-adjoint Sturm--Liouville operator with slowly growing potential. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Spectral theory, Tome 141 (2017), pp. 48-60. http://geodesic.mathdoc.fr/item/INTO_2017_141_a3/