Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2017_141_a3, author = {L. G. Valiullina and Kh. K. Ishkin}, title = {On the localization conditions for the spectrum of a non-self-adjoint {Sturm--Liouville} operator with slowly growing potential}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {48--60}, publisher = {mathdoc}, volume = {141}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2017_141_a3/} }
TY - JOUR AU - L. G. Valiullina AU - Kh. K. Ishkin TI - On the localization conditions for the spectrum of a non-self-adjoint Sturm--Liouville operator with slowly growing potential JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2017 SP - 48 EP - 60 VL - 141 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2017_141_a3/ LA - ru ID - INTO_2017_141_a3 ER -
%0 Journal Article %A L. G. Valiullina %A Kh. K. Ishkin %T On the localization conditions for the spectrum of a non-self-adjoint Sturm--Liouville operator with slowly growing potential %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2017 %P 48-60 %V 141 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2017_141_a3/ %G ru %F INTO_2017_141_a3
L. G. Valiullina; Kh. K. Ishkin. On the localization conditions for the spectrum of a non-self-adjoint Sturm--Liouville operator with slowly growing potential. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Spectral theory, Tome 141 (2017), pp. 48-60. http://geodesic.mathdoc.fr/item/INTO_2017_141_a3/