Identification of non-decaying boundary conditions
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Spectral theory, Tome 141 (2017), pp. 3-12
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the problem of identification of non-decaying boundary conditions by five eigenvalues. Based on the Plücker conditions that appear in the recovering of a matrix by its minors of maximal size, we prove the well-posedness set of the problem and construct its well-posedness set. We solve the problem of identification of the matrix of non-decaying boundary conditions in terms of the characteristic determinant of the corresponding spectral problem.
Keywords:
non-decaying boundary conditions, spectral problem, well-posedness in the Tikhonov sense
Mots-clés : Plücker conditions.
Mots-clés : Plücker conditions.
@article{INTO_2017_141_a0,
author = {A. M. Akhtyamov and A. V. Mouftakhov},
title = {Identification of non-decaying boundary conditions},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {3--12},
year = {2017},
volume = {141},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2017_141_a0/}
}
TY - JOUR AU - A. M. Akhtyamov AU - A. V. Mouftakhov TI - Identification of non-decaying boundary conditions JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2017 SP - 3 EP - 12 VL - 141 UR - http://geodesic.mathdoc.fr/item/INTO_2017_141_a0/ LA - ru ID - INTO_2017_141_a0 ER -
A. M. Akhtyamov; A. V. Mouftakhov. Identification of non-decaying boundary conditions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Spectral theory, Tome 141 (2017), pp. 3-12. http://geodesic.mathdoc.fr/item/INTO_2017_141_a0/