Choquet order and Jordan morphisms of operator algebras
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Mathematical physics, Tome 140 (2017), pp. 119-124 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We show that ordinal isomorphisms of orthogonal measures on state spaces of operator algebras equipped with the Choquet order are generated by Jordan isomorphisms of associated von Neumann algebras. This yields a new Jordan invariant of $\sigma$-finite von Neumann algebras in terms of decompositions of states.
Mots-clés : Choquet order, Abelian subalgebra, Jordan isomorphism.
Keywords: orthogonal measures
@article{INTO_2017_140_a8,
     author = {E. A. Turilova and J. Hamhalter},
     title = {Choquet order and {Jordan} morphisms of operator algebras},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {119--124},
     year = {2017},
     volume = {140},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2017_140_a8/}
}
TY  - JOUR
AU  - E. A. Turilova
AU  - J. Hamhalter
TI  - Choquet order and Jordan morphisms of operator algebras
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2017
SP  - 119
EP  - 124
VL  - 140
UR  - http://geodesic.mathdoc.fr/item/INTO_2017_140_a8/
LA  - ru
ID  - INTO_2017_140_a8
ER  - 
%0 Journal Article
%A E. A. Turilova
%A J. Hamhalter
%T Choquet order and Jordan morphisms of operator algebras
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2017
%P 119-124
%V 140
%U http://geodesic.mathdoc.fr/item/INTO_2017_140_a8/
%G ru
%F INTO_2017_140_a8
E. A. Turilova; J. Hamhalter. Choquet order and Jordan morphisms of operator algebras. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Mathematical physics, Tome 140 (2017), pp. 119-124. http://geodesic.mathdoc.fr/item/INTO_2017_140_a8/