Random walks and measures on Hilbert space that are invariant with respect to shifts and rotations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Mathematical physics, Tome 140 (2017), pp. 88-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study random walks in a Hilbert space $H$ and their applications to representations of solutions to Cauchy problems for differential equations whose initial conditions are numerical functions on the Hilbert space $H$. Examples of such representations of solutions to various evolution equations in the case of a finite-dimensional space $H$ are given. Measures on a Hilbert space that are invariant with respect to shifts are considered for constructing such representations in infinite-dimensional Hilbert spaces. According to a theorem of A. Weil, there is no Lebesgue measure on an infinite-dimensional Hilbert space. We study a finitely additive analog of the Lebesgue measure, namely, a nonnegative, finitely additive measure $\lambda$ defined on the minimal ring of subsets of an infinite-dimensional Hilbert space $H$ containing all infinite-dimensional rectangles whose products of sides converge absolutely; this measure is invariant with respect to shifts and rotations in the Hilbert space $H$. We also consider finitely additive analogs of the Lebesgue measure on the spaces $l_{p}$, $1\leq p\leq \infty$, and introduce the Hilbert space $\mathcal H$ of complex-valued functions on the Hilbert space $H$ that are square integrable with respect to a shift-invariant measure $\lambda$. We also obtain representations of solutions to the Cauchy problem for the diffusion equation in the space $H$ and the Schrödinger equation with the coordinate space $H$ by means of iterations of the mathematical expectations of random shift operators in the Hilbert space $\mathcal H$.
Keywords: finitely additive measure, invariant measure on a group, random walk, Cauchy problem, Chernov theorem.
Mots-clés : diffusion equation
@article{INTO_2017_140_a7,
     author = {V. Zh. Sakbaev},
     title = {Random walks and measures on {Hilbert} space that are invariant with respect to shifts and rotations},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {88--118},
     publisher = {mathdoc},
     volume = {140},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2017_140_a7/}
}
TY  - JOUR
AU  - V. Zh. Sakbaev
TI  - Random walks and measures on Hilbert space that are invariant with respect to shifts and rotations
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2017
SP  - 88
EP  - 118
VL  - 140
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2017_140_a7/
LA  - ru
ID  - INTO_2017_140_a7
ER  - 
%0 Journal Article
%A V. Zh. Sakbaev
%T Random walks and measures on Hilbert space that are invariant with respect to shifts and rotations
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2017
%P 88-118
%V 140
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2017_140_a7/
%G ru
%F INTO_2017_140_a7
V. Zh. Sakbaev. Random walks and measures on Hilbert space that are invariant with respect to shifts and rotations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Mathematical physics, Tome 140 (2017), pp. 88-118. http://geodesic.mathdoc.fr/item/INTO_2017_140_a7/