New cases of integrable systems with dissipation on tangent bundles of multidimensional spheres
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Mathematical physics, Tome 137 (2017), pp. 104-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

In many problems of multidimensional dynamics, systems appear whose state spaces are spheres of finite dimension. Clearly, phase spaces of such systems are tangent bundles of these spheres. In this paper, we examine nonconservative force field in the dynamics of a multidimensional rigid body in which the system possesses a complete set of first integrals that can be expressed as finite combinations of elementary transcendental functions. We consider the case where the moment of nonconservative forces depends on the tensor of angular velocity.
Keywords: dynamical system, dissipation, transcendental first integral, integrability.
@article{INTO_2017_137_a6,
     author = {M. V. Shamolin},
     title = {New cases of integrable systems with dissipation on tangent bundles of multidimensional spheres},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {104--117},
     publisher = {mathdoc},
     volume = {137},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2017_137_a6/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - New cases of integrable systems with dissipation on tangent bundles of multidimensional spheres
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2017
SP  - 104
EP  - 117
VL  - 137
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2017_137_a6/
LA  - ru
ID  - INTO_2017_137_a6
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T New cases of integrable systems with dissipation on tangent bundles of multidimensional spheres
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2017
%P 104-117
%V 137
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2017_137_a6/
%G ru
%F INTO_2017_137_a6
M. V. Shamolin. New cases of integrable systems with dissipation on tangent bundles of multidimensional spheres. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Mathematical physics, Tome 137 (2017), pp. 104-117. http://geodesic.mathdoc.fr/item/INTO_2017_137_a6/