Lie superalgebras and Calogero–Moser–Sutherland systems
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Seminar on algebra and geometry of the Samara University, Tome 136 (2017), pp. 72-102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We review recent results obtained at the intersection of the theory of quantum deformed Calogero–Moser–Sutherland systems and the theory of Lie superalgebras. We begin with a definition of admissible deformations of root systems of basic classical Lie superalgebras. For classical series, we prove the existence of Lax pairs. Connections between infinite-dimensional Calogero–Moser–Sutherland systems, deformed quantum CMS systems, and representation theory of Lie superalgebras are discussed.
Keywords: quantum Calogero–Moser–Sutherland system, Lie superalgebra, symmetric function, Euler character, Grothendieck ring.
Mots-clés : Lax pair
@article{INTO_2017_136_a3,
     author = {A. N. Sergeev},
     title = {Lie superalgebras and {Calogero{\textendash}Moser{\textendash}Sutherland} systems},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {72--102},
     year = {2017},
     volume = {136},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2017_136_a3/}
}
TY  - JOUR
AU  - A. N. Sergeev
TI  - Lie superalgebras and Calogero–Moser–Sutherland systems
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2017
SP  - 72
EP  - 102
VL  - 136
UR  - http://geodesic.mathdoc.fr/item/INTO_2017_136_a3/
LA  - ru
ID  - INTO_2017_136_a3
ER  - 
%0 Journal Article
%A A. N. Sergeev
%T Lie superalgebras and Calogero–Moser–Sutherland systems
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2017
%P 72-102
%V 136
%U http://geodesic.mathdoc.fr/item/INTO_2017_136_a3/
%G ru
%F INTO_2017_136_a3
A. N. Sergeev. Lie superalgebras and Calogero–Moser–Sutherland systems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Seminar on algebra and geometry of the Samara University, Tome 136 (2017), pp. 72-102. http://geodesic.mathdoc.fr/item/INTO_2017_136_a3/