Lie superalgebras and Calogero–Moser–Sutherland systems
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Seminar on algebra and geometry of the Samara University, Tome 136 (2017), pp. 72-102
Cet article a éte moissonné depuis la source Math-Net.Ru
We review recent results obtained at the intersection of the theory of quantum deformed Calogero–Moser–Sutherland systems and the theory of Lie superalgebras. We begin with a definition of admissible deformations of root systems of basic classical Lie superalgebras. For classical series, we prove the existence of Lax pairs. Connections between infinite-dimensional Calogero–Moser–Sutherland systems, deformed quantum CMS systems, and representation theory of Lie superalgebras are discussed.
Keywords:
quantum Calogero–Moser–Sutherland system, Lie superalgebra, symmetric function, Euler character, Grothendieck ring.
Mots-clés : Lax pair
Mots-clés : Lax pair
@article{INTO_2017_136_a3,
author = {A. N. Sergeev},
title = {Lie superalgebras and {Calogero{\textendash}Moser{\textendash}Sutherland} systems},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {72--102},
year = {2017},
volume = {136},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2017_136_a3/}
}
TY - JOUR AU - A. N. Sergeev TI - Lie superalgebras and Calogero–Moser–Sutherland systems JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2017 SP - 72 EP - 102 VL - 136 UR - http://geodesic.mathdoc.fr/item/INTO_2017_136_a3/ LA - ru ID - INTO_2017_136_a3 ER -
A. N. Sergeev. Lie superalgebras and Calogero–Moser–Sutherland systems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Seminar on algebra and geometry of the Samara University, Tome 136 (2017), pp. 72-102. http://geodesic.mathdoc.fr/item/INTO_2017_136_a3/