Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2017_130_a0, author = {S. S. Akbarov}, title = {{\CYRS}ontinuous and smooth envelopes of topological algebras. {Part~2}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {3--112}, publisher = {mathdoc}, volume = {130}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2017_130_a0/} }
TY - JOUR AU - S. S. Akbarov TI - Сontinuous and smooth envelopes of topological algebras. Part~2 JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2017 SP - 3 EP - 112 VL - 130 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2017_130_a0/ LA - ru ID - INTO_2017_130_a0 ER -
%0 Journal Article %A S. S. Akbarov %T Сontinuous and smooth envelopes of topological algebras. Part~2 %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2017 %P 3-112 %V 130 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2017_130_a0/ %G ru %F INTO_2017_130_a0
S. S. Akbarov. Сontinuous and smooth envelopes of topological algebras. Part~2. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Functional analysis, Tome 130 (2017), pp. 3-112. http://geodesic.mathdoc.fr/item/INTO_2017_130_a0/
[1] Akbarov S. S., “Golomorfnye funktsii eksponentsialnogo tipa i dvoistvennost dlya grupp Shteina s algebraicheskoi svyaznoi komponentoi edinitsy”, Fundam. prikl. mat., 14:1 (2008), 3–178
[2] Alekseevskii D. V., Vinogradov A. M., Lychagin V. V., “Osnovnye idei i ponyatiya differentsialnoi geometrii”, Itogi nauki i tekhn. Ser. Sovr. probl. mat. Fundam. napr., 28 (1988), 5–289
[3] Aristov O. Yu., “O tenzornykh proizvedeniyakh strogikh $C^*$-algebr”, Fundam. prikl. mat., 6:4 (2000), 977–984
[4] Artamonov V. A., Salii V. N., Skornyakov L. A., Shevrin L. N., Shulgeifer E. G., Obschaya algebra. T. 2, Nauka, M., 1991
[5] Barut A., Ronchka R., Teoriya predstavlenii grupp i ee prilozheniya, Mir, M., 1980
[6] Burbaki N., Topologicheskie vektornye prostranstva, IL, M., 1959
[7] Bukur I., Delyanu A., Vvedenie v teoriyu kategorii i funktorov, Mir, M., 1972
[8] Vinberg E. B., Onischik A. L., Seminar po gruppam Li i algebraicheskim gruppam, URSS, M., 1995
[9] Grauert G., Remmert R., Teoriya prostranstv Shteina, Nauka, M., 1989
[10] Griffits F., Kharris Dzh., Printsipy algebraicheskoi geometrii, Mir, M., 1982
[11] Diksme Zh., $C^*$-algebry i ikh predstavleniya, Nauka, M., 1974
[12] Zhelobenko D. P., Osnovnye struktury i metody teorii predstavlenii, MTsNMO, M., 2004
[13] Kelli Dzh. L., Obschaya topologiya, Nauka, M., 1981
[14] Maklein S., Kategorii dlya rabotayuschego matematika, Fizmatlit, M., 2004
[15] Merfi Dzh., $C^*$-Algebry i teoriya operatorov, Faktorial, M., 1997
[16] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1964
[17] Pirkovskii A. Yu., “Obolochki Arensa—Maikla, gomologicheskie epimorfizmy i otnositelno kvazisvobodnye algebry”, Tr. Mosk. mat. o-va., 69, 34–123
[18] Pich A., Yadernye lokalno vypuklye prostranstva, Mir, M., 1967
[19] Postnikov M. M., Gruppy i algebry Li, Nauka, M., 1982
[20] Khamfri Dzh., Lineinye algebraicheskie gruppy, Nauka, M., 1980
[21] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz. T. 1, Nauka, M., 1975
[22] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz. T. 2, Nauka, M., 1975
[23] Tsalenko M. Sh., Shulgeifer E. G., Osnovy teorii kategorii, Nauka, M., 1974
[24] Shevalle K., Teoriya grupp Li, v. I, IL, M., 1948
[25] Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1971
[26] Engelking R., Obschaya topologiya, Mir, M., 1986
[27] Adámek J., Rosicky J., Locally presentable and accessible categories, Cambridge Univ. Press, 1994
[28] Akbarov S. S., “Pontryagin duality in the theory of topological vector spaces and in topological algebra”, J. Math. Sci., 113:2 (2003), 179–349
[29] Akbarov S. S., “Envelopes and refinements in categories, with applications to functional analysis”, Diss. Math., 513:1 (2016), 1–188
[30] Aristov O. Yu., “Characterization of strict $C^*$-algebras”, Stud. Math., 112:1 (1994), 51–58
[31] Becker T., “A few remarks on the Dauns–Hofmann theorems for $C^*$-algabras”, Arch. Math., 43 (1984), 265–269
[32] Bochnak J., Coste M., Roy M. F., Real Algebraic Geometry, Springer, 1998
[33] Borceux F., Handbook of Categorical Algebra. 1. Basic Category Theory, Cambridge Univ. Press, 1994
[34] Clifford A. H., “Representations induced in an invariant subgroup”, Ann. Math., 38:3 (1937), 533–550
[35] Connes A., Noncommutative Geometry, Academic Press, Boston, MA, 1994
[36] Cooper J. B., Saks Spaces and Applications to Functional Analysis, North Holland, Elsevier, 1987
[37] Dauns J., Hofmann K. H., Representations of Rings by Continuous Sections, Am. Math. Soc., 1968
[38] Dupré M. J., Gillette R. M., Banach Bundles, Banach Modules and Automorphisms of $C^*$-Algebras, Boston, 1983
[39] Enock M., Schwartz J. M., Kac Algebras and Duality of Locally Compact Groups, Springer-Verlag, 1992
[40] Eymard P., “L'algèbre de Fourier d'un groupe localement compact”, Bull. Soc. Math. France, 92 (1964), 181–236
[41] Fragoulopoulou M., Topological Algebras with Involution, North-Holland, 2005
[42] Freudenthal H., “Einige Sätze über topologische Gruppen”, Ann. Math., 37:2 (1936), 46–56
[43] Grosser S., Moskowitz M., “On central topological groups”, Trans. Am. Math. Soc., 127:2 (1967), 317–340
[44] Grosser S., Moskowitz M., “Compactness conditions in topological groups”, J. Reine Angew. Math., 246 (1971), 1–40
[45] Hulanicki A., “Groups whose regular representation weakly contains all unitary representations”, Stud. Math., 24 (1964), 37–59
[46] Jarchow H., Locally Convex Spaces, Teubner, Stuttgart, 1981
[47] Kadison R. V., Ringrose J. R., Fundamentals of the Theory of Operator Algebras, v. I, Academic Press, 1986
[48] Kadison R. V., Ringrose J. R., Fundamentals of the Theory of Operator Algebras, v. II, Academic Press, 1986
[49] Kowalski E., Representation Theory, ETH Zürich, 2011
[50] Kriegl A., Michor P. W., The Convenient Setting of Global Analysis, Am. Math. Soc., 1997
[51] Kuznetsova J., “A duality for Moore groups”, J. Oper. Theory., 69:2 (2013), 101–130
[52] Llavona J. G., Approximation of Continuously Differentiable Functions, North Holland, 1986
[53] Luminet D., Valette A., “Faithful uniformly continuous representations of Lie groups”, J. Lond. Math. Soc., 49:2 (1994), 100–108
[54] Majid S., Foundations of Quantum Group Theory, Cambridge Univ. Press, 1995
[55] Michor P. W., Topics in Differential Geometry, Am. Math. Soc., Providence, New Jersey, 2008
[56] Nachbin L., “Sur les algèbres denses de fonctions différentiables sur une variété”, C. R. Acad. Sci. Paris, 228 (1949), 1549–1551
[57] Palmer T. W., Banach Algebras and the General Theory of *-Algebras, v. II, Academic Press, 2001
[58] Paterson A. L. T., Amenability, Am. Math. Soc., Providence, Rhode Island, 1988
[59] Renault J., Fourier Algebra, Springer-Verlag, 2001
[60] Rossi H., “On envelops of holomorphy”, Commun. Pure Appl. Math., 16 (1963), 9–17
[61] Sebestyén Z., “Every $C^*$-seminorm is automatically submultiplicative”, Period. Math. Hungar., 10 (1979), 1–8
[62] Singer I. M., “Uniformly continuous representations of Lie groups”, Ann. Math. (2)., 56 (1952), 242–247
[63] Sharpe R. W., Differential geometry. Cartan's generalization of Klein's Erlangen program, Springer, 1997
[64] Shtern A. I., “Norm continuous representations of locally compact groups”, Russ. J. Math. Phys., 15:4 (2008), 552–553
[65] Taylor J. L., Several complex variables with connections to algebraic geometry and Lie groups, Am. Math. Soc., Providence, Rhode Island, 2002
[66] Taylor J. L., “Homology and cohomology for topological algebras”, Adv. Math., 9 (1972), 137–182