Сontinuous and smooth envelopes of topological algebras. Part~2
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Functional analysis, Tome 130 (2017), pp. 3-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

Since the first optical instruments have been invented, an idea that the visible image of an object under observation depends on tools of observation became commonly assumed in physics. A way of formalizing this idea in mathematics is the construction that assigns to an arbitrary object $A$ in a category $K$ its envelope $\operatorname{Env}^{\Omega}_{\Phi}A$ in a given class of morphisms (a class of representations) with respect to a given class of morphisms (a class of observation tools) $\Phi$. It turns out that if we take a sufficiently wide category of topological algebras as $K$, then each choice of the classes $\Omega$ and $\Phi$ defines a “projection of functional analysis into geometry”, and the standard “geometric disciplines”, like complex geometry, differential geometry, and topology, become special cases of this construction. This gives a formal scheme of “categorical construction of geometries” with many interesting applications, in particular, “geometric generalizations of the Pontryagin duality” (to the classes of noncommutative groups). In this paper, we describe this scheme in topology and in differential geometry.
Keywords: stereotype space, stereotype algebra, envelope, Pontryagin duality.
@article{INTO_2017_130_a0,
     author = {S. S. Akbarov},
     title = {{\CYRS}ontinuous and smooth envelopes of topological algebras. {Part~2}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--112},
     publisher = {mathdoc},
     volume = {130},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2017_130_a0/}
}
TY  - JOUR
AU  - S. S. Akbarov
TI  - Сontinuous and smooth envelopes of topological algebras. Part~2
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2017
SP  - 3
EP  - 112
VL  - 130
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2017_130_a0/
LA  - ru
ID  - INTO_2017_130_a0
ER  - 
%0 Journal Article
%A S. S. Akbarov
%T Сontinuous and smooth envelopes of topological algebras. Part~2
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2017
%P 3-112
%V 130
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2017_130_a0/
%G ru
%F INTO_2017_130_a0
S. S. Akbarov. Сontinuous and smooth envelopes of topological algebras. Part~2. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Functional analysis, Tome 130 (2017), pp. 3-112. http://geodesic.mathdoc.fr/item/INTO_2017_130_a0/

[1] Akbarov S. S., “Golomorfnye funktsii eksponentsialnogo tipa i dvoistvennost dlya grupp Shteina s algebraicheskoi svyaznoi komponentoi edinitsy”, Fundam. prikl. mat., 14:1 (2008), 3–178

[2] Alekseevskii D. V., Vinogradov A. M., Lychagin V. V., “Osnovnye idei i ponyatiya differentsialnoi geometrii”, Itogi nauki i tekhn. Ser. Sovr. probl. mat. Fundam. napr., 28 (1988), 5–289

[3] Aristov O. Yu., “O tenzornykh proizvedeniyakh strogikh $C^*$-algebr”, Fundam. prikl. mat., 6:4 (2000), 977–984

[4] Artamonov V. A., Salii V. N., Skornyakov L. A., Shevrin L. N., Shulgeifer E. G., Obschaya algebra. T. 2, Nauka, M., 1991

[5] Barut A., Ronchka R., Teoriya predstavlenii grupp i ee prilozheniya, Mir, M., 1980

[6] Burbaki N., Topologicheskie vektornye prostranstva, IL, M., 1959

[7] Bukur I., Delyanu A., Vvedenie v teoriyu kategorii i funktorov, Mir, M., 1972

[8] Vinberg E. B., Onischik A. L., Seminar po gruppam Li i algebraicheskim gruppam, URSS, M., 1995

[9] Grauert G., Remmert R., Teoriya prostranstv Shteina, Nauka, M., 1989

[10] Griffits F., Kharris Dzh., Printsipy algebraicheskoi geometrii, Mir, M., 1982

[11] Diksme Zh., $C^*$-algebry i ikh predstavleniya, Nauka, M., 1974

[12] Zhelobenko D. P., Osnovnye struktury i metody teorii predstavlenii, MTsNMO, M., 2004

[13] Kelli Dzh. L., Obschaya topologiya, Nauka, M., 1981

[14] Maklein S., Kategorii dlya rabotayuschego matematika, Fizmatlit, M., 2004

[15] Merfi Dzh., $C^*$-Algebry i teoriya operatorov, Faktorial, M., 1997

[16] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1964

[17] Pirkovskii A. Yu., “Obolochki Arensa—Maikla, gomologicheskie epimorfizmy i otnositelno kvazisvobodnye algebry”, Tr. Mosk. mat. o-va., 69, 34–123

[18] Pich A., Yadernye lokalno vypuklye prostranstva, Mir, M., 1967

[19] Postnikov M. M., Gruppy i algebry Li, Nauka, M., 1982

[20] Khamfri Dzh., Lineinye algebraicheskie gruppy, Nauka, M., 1980

[21] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz. T. 1, Nauka, M., 1975

[22] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz. T. 2, Nauka, M., 1975

[23] Tsalenko M. Sh., Shulgeifer E. G., Osnovy teorii kategorii, Nauka, M., 1974

[24] Shevalle K., Teoriya grupp Li, v. I, IL, M., 1948

[25] Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1971

[26] Engelking R., Obschaya topologiya, Mir, M., 1986

[27] Adámek J., Rosicky J., Locally presentable and accessible categories, Cambridge Univ. Press, 1994

[28] Akbarov S. S., “Pontryagin duality in the theory of topological vector spaces and in topological algebra”, J. Math. Sci., 113:2 (2003), 179–349

[29] Akbarov S. S., “Envelopes and refinements in categories, with applications to functional analysis”, Diss. Math., 513:1 (2016), 1–188

[30] Aristov O. Yu., “Characterization of strict $C^*$-algebras”, Stud. Math., 112:1 (1994), 51–58

[31] Becker T., “A few remarks on the Dauns–Hofmann theorems for $C^*$-algabras”, Arch. Math., 43 (1984), 265–269

[32] Bochnak J., Coste M., Roy M. F., Real Algebraic Geometry, Springer, 1998

[33] Borceux F., Handbook of Categorical Algebra. 1. Basic Category Theory, Cambridge Univ. Press, 1994

[34] Clifford A. H., “Representations induced in an invariant subgroup”, Ann. Math., 38:3 (1937), 533–550

[35] Connes A., Noncommutative Geometry, Academic Press, Boston, MA, 1994

[36] Cooper J. B., Saks Spaces and Applications to Functional Analysis, North Holland, Elsevier, 1987

[37] Dauns J., Hofmann K. H., Representations of Rings by Continuous Sections, Am. Math. Soc., 1968

[38] Dupré M. J., Gillette R. M., Banach Bundles, Banach Modules and Automorphisms of $C^*$-Algebras, Boston, 1983

[39] Enock M., Schwartz J. M., Kac Algebras and Duality of Locally Compact Groups, Springer-Verlag, 1992

[40] Eymard P., “L'algèbre de Fourier d'un groupe localement compact”, Bull. Soc. Math. France, 92 (1964), 181–236

[41] Fragoulopoulou M., Topological Algebras with Involution, North-Holland, 2005

[42] Freudenthal H., “Einige Sätze über topologische Gruppen”, Ann. Math., 37:2 (1936), 46–56

[43] Grosser S., Moskowitz M., “On central topological groups”, Trans. Am. Math. Soc., 127:2 (1967), 317–340

[44] Grosser S., Moskowitz M., “Compactness conditions in topological groups”, J. Reine Angew. Math., 246 (1971), 1–40

[45] Hulanicki A., “Groups whose regular representation weakly contains all unitary representations”, Stud. Math., 24 (1964), 37–59

[46] Jarchow H., Locally Convex Spaces, Teubner, Stuttgart, 1981

[47] Kadison R. V., Ringrose J. R., Fundamentals of the Theory of Operator Algebras, v. I, Academic Press, 1986

[48] Kadison R. V., Ringrose J. R., Fundamentals of the Theory of Operator Algebras, v. II, Academic Press, 1986

[49] Kowalski E., Representation Theory, ETH Zürich, 2011

[50] Kriegl A., Michor P. W., The Convenient Setting of Global Analysis, Am. Math. Soc., 1997

[51] Kuznetsova J., “A duality for Moore groups”, J. Oper. Theory., 69:2 (2013), 101–130

[52] Llavona J. G., Approximation of Continuously Differentiable Functions, North Holland, 1986

[53] Luminet D., Valette A., “Faithful uniformly continuous representations of Lie groups”, J. Lond. Math. Soc., 49:2 (1994), 100–108

[54] Majid S., Foundations of Quantum Group Theory, Cambridge Univ. Press, 1995

[55] Michor P. W., Topics in Differential Geometry, Am. Math. Soc., Providence, New Jersey, 2008

[56] Nachbin L., “Sur les algèbres denses de fonctions différentiables sur une variété”, C. R. Acad. Sci. Paris, 228 (1949), 1549–1551

[57] Palmer T. W., Banach Algebras and the General Theory of *-Algebras, v. II, Academic Press, 2001

[58] Paterson A. L. T., Amenability, Am. Math. Soc., Providence, Rhode Island, 1988

[59] Renault J., Fourier Algebra, Springer-Verlag, 2001

[60] Rossi H., “On envelops of holomorphy”, Commun. Pure Appl. Math., 16 (1963), 9–17

[61] Sebestyén Z., “Every $C^*$-seminorm is automatically submultiplicative”, Period. Math. Hungar., 10 (1979), 1–8

[62] Singer I. M., “Uniformly continuous representations of Lie groups”, Ann. Math. (2)., 56 (1952), 242–247

[63] Sharpe R. W., Differential geometry. Cartan's generalization of Klein's Erlangen program, Springer, 1997

[64] Shtern A. I., “Norm continuous representations of locally compact groups”, Russ. J. Math. Phys., 15:4 (2008), 552–553

[65] Taylor J. L., Several complex variables with connections to algebraic geometry and Lie groups, Am. Math. Soc., Providence, Rhode Island, 2002

[66] Taylor J. L., “Homology and cohomology for topological algebras”, Adv. Math., 9 (1972), 137–182