Variety of integrable cases in dynamics of low- and multi-dimensional rigid bodies in nonconservative force fields
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Dynamical systems, Tome 125 (2013), pp. 3-251
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is a survey of integrable cases in dynamics of two-, three-, and four-dimensional rigid bodies under the action of a nonconservative force field. We review both new results and results obtained earlier. Problems examined are described by dynamical systems with so-called variable dissipation with zero mean.
@article{INTO_2013_125_a0,
author = {M. V. Shamolin},
title = {Variety of integrable cases in dynamics of low- and multi-dimensional rigid bodies in nonconservative force fields},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {3--251},
publisher = {mathdoc},
volume = {125},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2013_125_a0/}
}
TY - JOUR AU - M. V. Shamolin TI - Variety of integrable cases in dynamics of low- and multi-dimensional rigid bodies in nonconservative force fields JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2013 SP - 3 EP - 251 VL - 125 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2013_125_a0/ LA - ru ID - INTO_2013_125_a0 ER -
%0 Journal Article %A M. V. Shamolin %T Variety of integrable cases in dynamics of low- and multi-dimensional rigid bodies in nonconservative force fields %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2013 %P 3-251 %V 125 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2013_125_a0/ %G ru %F INTO_2013_125_a0
M. V. Shamolin. Variety of integrable cases in dynamics of low- and multi-dimensional rigid bodies in nonconservative force fields. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Dynamical systems, Tome 125 (2013), pp. 3-251. http://geodesic.mathdoc.fr/item/INTO_2013_125_a0/