Variety of integrable cases in dynamics of low- and multi-dimensional rigid bodies in nonconservative force fields
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Dynamical systems, Tome 125 (2013), pp. 3-251.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a survey of integrable cases in dynamics of two-, three-, and four-dimensional rigid bodies under the action of a nonconservative force field. We review both new results and results obtained earlier. Problems examined are described by dynamical systems with so-called variable dissipation with zero mean.
@article{INTO_2013_125_a0,
     author = {M. V. Shamolin},
     title = {Variety of integrable cases in dynamics of low- and multi-dimensional rigid bodies in nonconservative force fields},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--251},
     publisher = {mathdoc},
     volume = {125},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2013_125_a0/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Variety of integrable cases in dynamics of low- and multi-dimensional rigid bodies in nonconservative force fields
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2013
SP  - 3
EP  - 251
VL  - 125
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2013_125_a0/
LA  - ru
ID  - INTO_2013_125_a0
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Variety of integrable cases in dynamics of low- and multi-dimensional rigid bodies in nonconservative force fields
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2013
%P 3-251
%V 125
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2013_125_a0/
%G ru
%F INTO_2013_125_a0
M. V. Shamolin. Variety of integrable cases in dynamics of low- and multi-dimensional rigid bodies in nonconservative force fields. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Dynamical systems, Tome 125 (2013), pp. 3-251. http://geodesic.mathdoc.fr/item/INTO_2013_125_a0/