A remark on structures in tangent bundles
Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 5 (1974), pp. 311-318
Voir la notice de l'article provenant de la source Math-Net.Ru
In the theory of tangent bundle $T^r(M)$ over a differentiable manifold $M$ of class $C^\omega$ а structure arises which is determined with the help of aglebra $\mathbf R(\varepsilon)$. This aglebra is the result of elements $\mathbf 1$ et $\varepsilon$, where $\varepsilon^{r+1}=0$. With the help of this algebra it is simple to build the lifts of tensor fields from $M$ in $T^r(M)$. As an example a group of motions of Euclidean space $R_3$ is considered which can be interpretated both as the real model of elliptic space $S_3(\varepsilon)$ over a algebra of dual numbers and as the tangent bundle $T(S_3)$.
@article{INTG_1974_5_a11,
author = {A. P. Shirokov},
title = {A remark on structures in tangent bundles},
journal = {Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara},
pages = {311--318},
publisher = {mathdoc},
volume = {5},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTG_1974_5_a11/}
}
TY - JOUR AU - A. P. Shirokov TI - A remark on structures in tangent bundles JO - Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara PY - 1974 SP - 311 EP - 318 VL - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTG_1974_5_a11/ LA - ru ID - INTG_1974_5_a11 ER -
A. P. Shirokov. A remark on structures in tangent bundles. Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 5 (1974), pp. 311-318. http://geodesic.mathdoc.fr/item/INTG_1974_5_a11/