A remark on structures in tangent bundles
Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 5 (1974), pp. 311-318.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the theory of tangent bundle $T^r(M)$ over a differentiable manifold $M$ of class $C^\omega$ а structure arises which is determined with the help of aglebra $\mathbf R(\varepsilon)$. This aglebra is the result of elements $\mathbf 1$ et $\varepsilon$, where $\varepsilon^{r+1}=0$. With the help of this algebra it is simple to build the lifts of tensor fields from $M$ in $T^r(M)$. As an example a group of motions of Euclidean space $R_3$ is considered which can be interpretated both as the real model of elliptic space $S_3(\varepsilon)$ over a algebra of dual numbers and as the tangent bundle $T(S_3)$.
@article{INTG_1974_5_a11,
     author = {A. P. Shirokov},
     title = {A remark on structures in tangent bundles},
     journal = {Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara},
     pages = {311--318},
     publisher = {mathdoc},
     volume = {5},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTG_1974_5_a11/}
}
TY  - JOUR
AU  - A. P. Shirokov
TI  - A remark on structures in tangent bundles
JO  - Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara
PY  - 1974
SP  - 311
EP  - 318
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTG_1974_5_a11/
LA  - ru
ID  - INTG_1974_5_a11
ER  - 
%0 Journal Article
%A A. P. Shirokov
%T A remark on structures in tangent bundles
%J Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara
%D 1974
%P 311-318
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTG_1974_5_a11/
%G ru
%F INTG_1974_5_a11
A. P. Shirokov. A remark on structures in tangent bundles. Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 5 (1974), pp. 311-318. http://geodesic.mathdoc.fr/item/INTG_1974_5_a11/