Morse theory and Lyusternik--Shnirel'man theory in geometric control theory
Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya, Tome 39 (1991), pp. 41-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

Questions, related to the application of the ideas of global analysis to optimal control problems, are considered. A theory of Lyusternik–Shnirel'man type is constructed for Hilbert manifolds with singularities, the so-called transversally convex subsets. Conditions for the nondegeneracy of the critical points (the extremal controls) are established in the optimal control problem, related to a smooth control system of constant rank, and a formula for their Morse index is given.
@article{INTD_1991_39_a1,
     author = {S. A. Vakhrameev},
     title = {Morse theory and {Lyusternik--Shnirel'man} theory in geometric control theory},
     journal = {Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya},
     pages = {41--117},
     publisher = {mathdoc},
     volume = {39},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTD_1991_39_a1/}
}
TY  - JOUR
AU  - S. A. Vakhrameev
TI  - Morse theory and Lyusternik--Shnirel'man theory in geometric control theory
JO  - Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya
PY  - 1991
SP  - 41
EP  - 117
VL  - 39
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTD_1991_39_a1/
LA  - ru
ID  - INTD_1991_39_a1
ER  - 
%0 Journal Article
%A S. A. Vakhrameev
%T Morse theory and Lyusternik--Shnirel'man theory in geometric control theory
%J Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya
%D 1991
%P 41-117
%V 39
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTD_1991_39_a1/
%G ru
%F INTD_1991_39_a1
S. A. Vakhrameev. Morse theory and Lyusternik--Shnirel'man theory in geometric control theory. Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya, Tome 39 (1991), pp. 41-117. http://geodesic.mathdoc.fr/item/INTD_1991_39_a1/