Algebraic $K$-theory and the norm residue homomorphism
Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya, Tome 25 (1984), pp. 115-207.

Voir la notice de l'article provenant de la source Math-Net.Ru

Recent results on the structure of the group $K_2$ of a field and its connections with the Brauer group are presented. The $K$-groups of Severi–Brauer varieties and simple algebras are computed. A proof is given of Milnor's conjecture that for any field $F$ and natural number $n>1$ there is the isomorphism $R_{n,F}\colon K_2(F)/nK_2(F)\overset\sim\to_n\mathrm{Br}(F)$. Algebrogeometric applications of the main results are presented.
@article{INTD_1984_25_a2,
     author = {A. A. Suslin},
     title = {Algebraic $K$-theory and the norm residue homomorphism},
     journal = {Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya},
     pages = {115--207},
     publisher = {mathdoc},
     volume = {25},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTD_1984_25_a2/}
}
TY  - JOUR
AU  - A. A. Suslin
TI  - Algebraic $K$-theory and the norm residue homomorphism
JO  - Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya
PY  - 1984
SP  - 115
EP  - 207
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTD_1984_25_a2/
LA  - ru
ID  - INTD_1984_25_a2
ER  - 
%0 Journal Article
%A A. A. Suslin
%T Algebraic $K$-theory and the norm residue homomorphism
%J Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya
%D 1984
%P 115-207
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTD_1984_25_a2/
%G ru
%F INTD_1984_25_a2
A. A. Suslin. Algebraic $K$-theory and the norm residue homomorphism. Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya, Tome 25 (1984), pp. 115-207. http://geodesic.mathdoc.fr/item/INTD_1984_25_a2/