Algebraic $K$-theory and the norm residue homomorphism
Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya, Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya", Tome 25 (1984), pp. 115-207
Cet article a éte moissonné depuis la source Math-Net.Ru
Recent results on the structure of the group $K_2$ of a field and its connections with the Brauer group are presented. The $K$-groups of Severi–Brauer varieties and simple algebras are computed. A proof is given of Milnor's conjecture that for any field $F$ and natural number $n>1$ there is the isomorphism $R_{n,F}\colon K_2(F)/nK_2(F)\overset\sim\to_n\mathrm{Br}(F)$. Algebrogeometric applications of the main results are presented.
@article{INTD_1984_25_a2,
author = {A. A. Suslin},
title = {Algebraic $K$-theory and the norm residue homomorphism},
journal = {Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya},
pages = {115--207},
year = {1984},
volume = {25},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTD_1984_25_a2/}
}
TY - JOUR AU - A. A. Suslin TI - Algebraic $K$-theory and the norm residue homomorphism JO - Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya PY - 1984 SP - 115 EP - 207 VL - 25 UR - http://geodesic.mathdoc.fr/item/INTD_1984_25_a2/ LA - ru ID - INTD_1984_25_a2 ER -
A. A. Suslin. Algebraic $K$-theory and the norm residue homomorphism. Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya, Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya", Tome 25 (1984), pp. 115-207. http://geodesic.mathdoc.fr/item/INTD_1984_25_a2/