Integration of a~non-linear Hirota type equation with additional terms
Izvestiya. Mathematics , Tome 89 (2025) no. 1, pp. 196-219
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, the inverse spectral problem method is used to integrate a Hirota type equation with additional terms in the class of periodic infinite-gap functions. The solvability of the Cauchy problem for an infinite system of Dubrovin differential equations in the class of six times continuously differentiable periodic infinite-gap functions is proved.
It is also shown that the Cauchy problem is solvable at all times for sufficiently smooth initial conditions.
Keywords:
non-linear Hirota type equation with additional terms, Dirac operator, spectral data,
system of Dubrovin equations, trace formulas.
@article{IM2_2025_89_1_a8,
author = {A. B. Khasanov and R. Kh. Eshbekov and T. G. Hasanov},
title = {Integration of a~non-linear {Hirota} type equation with additional terms},
journal = {Izvestiya. Mathematics },
pages = {196--219},
publisher = {mathdoc},
volume = {89},
number = {1},
year = {2025},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a8/}
}
TY - JOUR AU - A. B. Khasanov AU - R. Kh. Eshbekov AU - T. G. Hasanov TI - Integration of a~non-linear Hirota type equation with additional terms JO - Izvestiya. Mathematics PY - 2025 SP - 196 EP - 219 VL - 89 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a8/ LA - en ID - IM2_2025_89_1_a8 ER -
A. B. Khasanov; R. Kh. Eshbekov; T. G. Hasanov. Integration of a~non-linear Hirota type equation with additional terms. Izvestiya. Mathematics , Tome 89 (2025) no. 1, pp. 196-219. http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a8/