Normalization flow in the presence of a~resonance
Izvestiya. Mathematics , Tome 89 (2025) no. 1, pp. 172-195.

Voir la notice de l'article provenant de la source Math-Net.Ru

Following [18], we develop an approach to the Hamiltonian theory of normal forms based on continuous averaging. We concentrate on the case of normal forms near an elliptic singular point, but unlike [18] we do not assume that frequences of the linearized system are non-resonant. We study analytic properties of the normalization procedure. In particular, we show that in the case of a codimension one resonance an analytic Hamiltonian function may be reduced to a normal form up to an exponentially small reminder with explicit estimates of the reminder and the analyticity domain.
Keywords: Hamiltonian normal forms, Hamiltonian perturbation theory.
@article{IM2_2025_89_1_a7,
     author = {D. V. Treschev},
     title = {Normalization flow in the presence of a~resonance},
     journal = {Izvestiya. Mathematics },
     pages = {172--195},
     publisher = {mathdoc},
     volume = {89},
     number = {1},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a7/}
}
TY  - JOUR
AU  - D. V. Treschev
TI  - Normalization flow in the presence of a~resonance
JO  - Izvestiya. Mathematics 
PY  - 2025
SP  - 172
EP  - 195
VL  - 89
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a7/
LA  - en
ID  - IM2_2025_89_1_a7
ER  - 
%0 Journal Article
%A D. V. Treschev
%T Normalization flow in the presence of a~resonance
%J Izvestiya. Mathematics 
%D 2025
%P 172-195
%V 89
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a7/
%G en
%F IM2_2025_89_1_a7
D. V. Treschev. Normalization flow in the presence of a~resonance. Izvestiya. Mathematics , Tome 89 (2025) no. 1, pp. 172-195. http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a7/

[1] G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., 9, Amer. Math. Soc., New York, 1927 | MR | Zbl

[2] A. D. Brjuno, “Analytical form of differential equations”, Trans. Moscow Math. Soc., 25 (1973), 131–288; II, 26 (1974), 199–239

[3] J. Dieudonné, Foundations of modern analysis, Treatise of analysis. I, Pure Appl. Math., 10-1, 2nd rev. ed., Academic Press, New York–London, 1969 | MR | Zbl

[4] L. H. Eliasson, “Normal forms for Hamiltonian systems with Poisson commuting integrals — elliptic case”, Comment. Math. Helv., 65:1 (1990), 4–35 | DOI | MR | Zbl

[5] B. Fayad, “Lyapunov unstable elliptic equilibria”, J. Amer. Math. Soc., 36:1 (2023), 81–106 | DOI | MR | Zbl

[6] Xianghong Gong, “Existence of divergent Birkhoff normal forms of Hamiltonian functions”, Illinois J. Math., 56:1 (2012), 85–94 | DOI | MR | Zbl

[7] H. Ito, “Convergence of Birkhoff normal forms for integrable systems”, Comment. Math. Helv., 64:3 (1989), 412–461 | DOI | MR | Zbl

[8] T. Kappeler, Y. Kodama, and A. Némethi, “On the Birkhoff normal form of a completely integrable Hamiltonian system near a fixed point with resonance”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26:4 (1998), 623–661 | MR | Zbl

[9] V. V. Kozlov, “Formal stability, stability for most initial conditions and diffusion in analytic systems of differential equations”, Regul. Chaotic Dyn., 28:3 (2023), 251–264 | DOI | MR | Zbl

[10] R. Krikorian, “On the divergence of Birkhoff normal forms”, Publ. Math. Inst. Hautes Études Sci., 135 (2022), 1–181 | DOI | MR | Zbl

[11] J. Moser, “On the volume elements on a manifold”, Trans. Amer. Math. Soc., 120 (1965), 286–294 | DOI | MR | Zbl

[12] R. Pérez-Marco, “Convergence or generic divergence of the Birkhoff normal form”, Ann. of Math. (2), 157:2 (2003), 557–574 | DOI | MR | Zbl

[13] H. Rüssmann, “Über die Normalform analytischer Hamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung”, Math. Ann., 169 (1967), 55–72 | DOI | MR | Zbl

[14] C. L. Siegel, “Über die Existenz einer Normalform analytischer Hamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung”, Math. Ann., 128 (1954), 144–170 | DOI | MR | Zbl

[15] C. L. Siegel and J. K. Moser, Lectures on celestial mechanics, Transl. from the the German, Grundlehren Math. Wiss., 187, Springer-Verlag, New York–Heidelberg, 1971 | DOI | MR | Zbl

[16] L. Stolovitch, “Singular complete integrability”, Inst. Hautes Études Sci. Publ. Math., 91 (2000), 133–210 | DOI | MR | Zbl

[17] D. Treschev and O. Zubelevich, Introduction to the perturbation theory of Hamiltonian systems, Springer Monogr. Math., Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl

[18] D. Treschev, Normalization flow, arXiv: 2303.02992

[19] J. Vey, “Sur certains systemes dynamiques separables”, Amer. J. Math., 100:3 (1978), 591–614 | DOI | MR | Zbl

[20] Wanke Yin, “Divergent Birkhoff normal forms of real analytic area preserving maps”, Math. Z., 280:3-4 (2015), 1005–1014 | DOI | MR | Zbl