Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2025_89_1_a7, author = {D. V. Treschev}, title = {Normalization flow in the presence of a~resonance}, journal = {Izvestiya. Mathematics }, pages = {172--195}, publisher = {mathdoc}, volume = {89}, number = {1}, year = {2025}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a7/} }
D. V. Treschev. Normalization flow in the presence of a~resonance. Izvestiya. Mathematics , Tome 89 (2025) no. 1, pp. 172-195. http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a7/
[1] G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., 9, Amer. Math. Soc., New York, 1927 | MR | Zbl
[2] A. D. Brjuno, “Analytical form of differential equations”, Trans. Moscow Math. Soc., 25 (1973), 131–288; II, 26 (1974), 199–239
[3] J. Dieudonné, Foundations of modern analysis, Treatise of analysis. I, Pure Appl. Math., 10-1, 2nd rev. ed., Academic Press, New York–London, 1969 | MR | Zbl
[4] L. H. Eliasson, “Normal forms for Hamiltonian systems with Poisson commuting integrals — elliptic case”, Comment. Math. Helv., 65:1 (1990), 4–35 | DOI | MR | Zbl
[5] B. Fayad, “Lyapunov unstable elliptic equilibria”, J. Amer. Math. Soc., 36:1 (2023), 81–106 | DOI | MR | Zbl
[6] Xianghong Gong, “Existence of divergent Birkhoff normal forms of Hamiltonian functions”, Illinois J. Math., 56:1 (2012), 85–94 | DOI | MR | Zbl
[7] H. Ito, “Convergence of Birkhoff normal forms for integrable systems”, Comment. Math. Helv., 64:3 (1989), 412–461 | DOI | MR | Zbl
[8] T. Kappeler, Y. Kodama, and A. Némethi, “On the Birkhoff normal form of a completely integrable Hamiltonian system near a fixed point with resonance”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26:4 (1998), 623–661 | MR | Zbl
[9] V. V. Kozlov, “Formal stability, stability for most initial conditions and diffusion in analytic systems of differential equations”, Regul. Chaotic Dyn., 28:3 (2023), 251–264 | DOI | MR | Zbl
[10] R. Krikorian, “On the divergence of Birkhoff normal forms”, Publ. Math. Inst. Hautes Études Sci., 135 (2022), 1–181 | DOI | MR | Zbl
[11] J. Moser, “On the volume elements on a manifold”, Trans. Amer. Math. Soc., 120 (1965), 286–294 | DOI | MR | Zbl
[12] R. Pérez-Marco, “Convergence or generic divergence of the Birkhoff normal form”, Ann. of Math. (2), 157:2 (2003), 557–574 | DOI | MR | Zbl
[13] H. Rüssmann, “Über die Normalform analytischer Hamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung”, Math. Ann., 169 (1967), 55–72 | DOI | MR | Zbl
[14] C. L. Siegel, “Über die Existenz einer Normalform analytischer Hamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung”, Math. Ann., 128 (1954), 144–170 | DOI | MR | Zbl
[15] C. L. Siegel and J. K. Moser, Lectures on celestial mechanics, Transl. from the the German, Grundlehren Math. Wiss., 187, Springer-Verlag, New York–Heidelberg, 1971 | DOI | MR | Zbl
[16] L. Stolovitch, “Singular complete integrability”, Inst. Hautes Études Sci. Publ. Math., 91 (2000), 133–210 | DOI | MR | Zbl
[17] D. Treschev and O. Zubelevich, Introduction to the perturbation theory of Hamiltonian systems, Springer Monogr. Math., Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl
[18] D. Treschev, Normalization flow, arXiv: 2303.02992
[19] J. Vey, “Sur certains systemes dynamiques separables”, Amer. J. Math., 100:3 (1978), 591–614 | DOI | MR | Zbl
[20] Wanke Yin, “Divergent Birkhoff normal forms of real analytic area preserving maps”, Math. Z., 280:3-4 (2015), 1005–1014 | DOI | MR | Zbl