Normalization flow in the presence of a~resonance
Izvestiya. Mathematics , Tome 89 (2025) no. 1, pp. 172-195

Voir la notice de l'article provenant de la source Math-Net.Ru

Following [18], we develop an approach to the Hamiltonian theory of normal forms based on continuous averaging. We concentrate on the case of normal forms near an elliptic singular point, but unlike [18] we do not assume that frequences of the linearized system are non-resonant. We study analytic properties of the normalization procedure. In particular, we show that in the case of a codimension one resonance an analytic Hamiltonian function may be reduced to a normal form up to an exponentially small reminder with explicit estimates of the reminder and the analyticity domain.
Keywords: Hamiltonian normal forms, Hamiltonian perturbation theory.
@article{IM2_2025_89_1_a7,
     author = {D. V. Treschev},
     title = {Normalization flow in the presence of a~resonance},
     journal = {Izvestiya. Mathematics },
     pages = {172--195},
     publisher = {mathdoc},
     volume = {89},
     number = {1},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a7/}
}
TY  - JOUR
AU  - D. V. Treschev
TI  - Normalization flow in the presence of a~resonance
JO  - Izvestiya. Mathematics 
PY  - 2025
SP  - 172
EP  - 195
VL  - 89
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a7/
LA  - en
ID  - IM2_2025_89_1_a7
ER  - 
%0 Journal Article
%A D. V. Treschev
%T Normalization flow in the presence of a~resonance
%J Izvestiya. Mathematics 
%D 2025
%P 172-195
%V 89
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a7/
%G en
%F IM2_2025_89_1_a7
D. V. Treschev. Normalization flow in the presence of a~resonance. Izvestiya. Mathematics , Tome 89 (2025) no. 1, pp. 172-195. http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a7/