Toric geometry and the standard conjecture for a~compactification of the N\'eron model of Abelian variety
Izvestiya. Mathematics , Tome 89 (2025) no. 1, pp. 140-171

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if $\mathcal M\to C$ is the Néron minimal model of a principally polarized $(d-1)$-dimensional Abelian variety $\mathcal M_\eta$ over the field $\kappa(\eta)$ of rational functions of a smooth projective curve $C$, $$ \operatorname{End}_{\overline{\kappa(\eta)}} (\mathcal M_\eta\otimes_{\kappa(\eta)}\overline{\kappa(\eta)})=\mathbb Z, $$ the complexification of the Lie algebra of the Hodge group $\operatorname{Hg}(M_\eta\otimes_{\kappa(\eta)}\mathbb {C})$ is a simple Lie algebra of type $C_{d-1}$, all bad reductions of the Abelian variety $\mathcal M_\eta$ are semi-stable, for any places $\delta,\delta'$ of bad reductions the $\mathbb Q$-space of Hodge cycles on the product $\operatorname{Alb}(\overline{\mathcal M_\delta^0})\,\times \, \operatorname{Alb}(\overline{\mathcal M_{\delta'}^0})$ of Albanese varieties is generated by classes of algebraic cycles, then there exists a finite ramified covering $\widetilde{C}\to C$ such that, for any Künnemann compactification $\widetilde{X}$ of the Néron minimal model of the Abelian variety $\mathcal M_\eta\otimes_{\kappa(\eta)}\kappa(\widetilde{\eta})$, the Grothendieck standard conjecture $B(\widetilde{X})$ of Lefschetz type is true.
Keywords: toric geometry, Grothendieck standard conjecture of Lefschetz type, Abelian variety, Künnemann compactification of Néron model, Hodge conjecture.
@article{IM2_2025_89_1_a6,
     author = {S. G. Tankeev},
     title = {Toric geometry and the standard conjecture for a~compactification of the {N\'eron} model of {Abelian} variety},
     journal = {Izvestiya. Mathematics },
     pages = {140--171},
     publisher = {mathdoc},
     volume = {89},
     number = {1},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a6/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - Toric geometry and the standard conjecture for a~compactification of the N\'eron model of Abelian variety
JO  - Izvestiya. Mathematics 
PY  - 2025
SP  - 140
EP  - 171
VL  - 89
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a6/
LA  - en
ID  - IM2_2025_89_1_a6
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T Toric geometry and the standard conjecture for a~compactification of the N\'eron model of Abelian variety
%J Izvestiya. Mathematics 
%D 2025
%P 140-171
%V 89
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a6/
%G en
%F IM2_2025_89_1_a6
S. G. Tankeev. Toric geometry and the standard conjecture for a~compactification of the N\'eron model of Abelian variety. Izvestiya. Mathematics , Tome 89 (2025) no. 1, pp. 140-171. http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a6/