Toric geometry and the standard conjecture for a~compactification of the N\'eron model of Abelian variety
Izvestiya. Mathematics , Tome 89 (2025) no. 1, pp. 140-171.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if $\mathcal M\to C$ is the Néron minimal model of a principally polarized $(d-1)$-dimensional Abelian variety $\mathcal M_\eta$ over the field $\kappa(\eta)$ of rational functions of a smooth projective curve $C$, $$ \operatorname{End}_{\overline{\kappa(\eta)}} (\mathcal M_\eta\otimes_{\kappa(\eta)}\overline{\kappa(\eta)})=\mathbb Z, $$ the complexification of the Lie algebra of the Hodge group $\operatorname{Hg}(M_\eta\otimes_{\kappa(\eta)}\mathbb {C})$ is a simple Lie algebra of type $C_{d-1}$, all bad reductions of the Abelian variety $\mathcal M_\eta$ are semi-stable, for any places $\delta,\delta'$ of bad reductions the $\mathbb Q$-space of Hodge cycles on the product $\operatorname{Alb}(\overline{\mathcal M_\delta^0})\,\times \, \operatorname{Alb}(\overline{\mathcal M_{\delta'}^0})$ of Albanese varieties is generated by classes of algebraic cycles, then there exists a finite ramified covering $\widetilde{C}\to C$ such that, for any Künnemann compactification $\widetilde{X}$ of the Néron minimal model of the Abelian variety $\mathcal M_\eta\otimes_{\kappa(\eta)}\kappa(\widetilde{\eta})$, the Grothendieck standard conjecture $B(\widetilde{X})$ of Lefschetz type is true.
Keywords: toric geometry, Grothendieck standard conjecture of Lefschetz type, Abelian variety, Künnemann compactification of Néron model, Hodge conjecture.
@article{IM2_2025_89_1_a6,
     author = {S. G. Tankeev},
     title = {Toric geometry and the standard conjecture for a~compactification of the {N\'eron} model of {Abelian} variety},
     journal = {Izvestiya. Mathematics },
     pages = {140--171},
     publisher = {mathdoc},
     volume = {89},
     number = {1},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a6/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - Toric geometry and the standard conjecture for a~compactification of the N\'eron model of Abelian variety
JO  - Izvestiya. Mathematics 
PY  - 2025
SP  - 140
EP  - 171
VL  - 89
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a6/
LA  - en
ID  - IM2_2025_89_1_a6
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T Toric geometry and the standard conjecture for a~compactification of the N\'eron model of Abelian variety
%J Izvestiya. Mathematics 
%D 2025
%P 140-171
%V 89
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a6/
%G en
%F IM2_2025_89_1_a6
S. G. Tankeev. Toric geometry and the standard conjecture for a~compactification of the N\'eron model of Abelian variety. Izvestiya. Mathematics , Tome 89 (2025) no. 1, pp. 140-171. http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a6/

[1] A. Grothendieck, “Standard conjectures on algebraic cycles”, Algebraic geometry, Internat. colloq. (Tata Inst. Fund. Res., Bombay 1968), Tata Inst. Fundam. Res. Stud. Math., 4, Oxford Univ. Press, London, 1969, 193–199 | MR | Zbl

[2] S. L. Kleiman, “Algebraic cycles and the Weil conjectures”, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., 3, North-Holland Publishing Co., Amsterdam, 1968, 359–386 | MR | Zbl

[3] S. G. Tankeev, “On the standard conjecture for complex Abelian schemes over smooth projective curves”, Izv. Math., 67:3 (2003), 597–635 | DOI

[4] S. G. Tankeev, “On the numerical equivalence of algebraic cycles on potentially simple Abelian schemes of prime relative dimension”, Izv. Math., 69:1 (2005), 143–162 | DOI

[5] S. G. Tankeev, “Monoidal transformations and conjectures on algebraic cycles”, Izv. Math., 71:3 (2007), 629–655 | DOI

[6] D. I. Lieberman, “Numerical and homological equivalence of algebraic cycles on Hodge manifolds”, Amer. J. Math., 90:2 (1968), 366–374 | DOI | MR | Zbl

[7] S. G. Tankeev, “On the standard conjecture of Lefschetz type for complex projective threefolds. II”, Izv. Math., 75:5 (2011), 1047–1062 | DOI

[8] D. Arapura, “Motivation for Hodge cycles”, Adv. Math., 207:2 (2006), 762–781 | DOI | MR | Zbl

[9] F. Charles and E. Markman, “The standard conjectures for holomorphic symplectic varieties deformation equivalent to Hilbert schemes of $K3$ surfaces”, Compos. Math., 149:3 (2013), 481–494 | DOI | MR | Zbl

[10] G. Bini, R. Laterveer, and G. Pacienza, “Voisin's conjecture for zero-cycles on Calabi–Yau varieties and their mirrors”, Adv. Geom., 20:1 (2020), 91–108 | DOI | MR | Zbl

[11] R. Laterveer, “Motives and the Pfaffian–Grassmanian equivalence”, J. Lond. Math. Soc. (2), 104:4 (2021), 1738–1764 | DOI | MR | Zbl

[12] S. G. Tankeev, “On the standard conjecture and the existence of a Chow–Lefschetz decomposition for complex projective varieties”, Izv. Math., 79:1 (2015), 177–207 | DOI

[13] S. G. Tankeev, “On the standard conjecture for a $3$-dimensional variety fibred by curves with a non-injective Kodaira–Spencer map”, Izv. Math., 84:5 (2020), 1016–1035 | DOI

[14] S. G. Tankeev, “On the standard conjecture for projective compactifications of Néron models of $3$-dimensional Abelian varieties”, Izv. Math., 85:1 (2021), 145–175 | DOI

[15] Y. André, “Pour une théorie inconditionnelle des motifs”, Inst. Hautes Études Sci. Publ. Math., 83 (1996), 5–49 | DOI | MR | Zbl

[16] J. S. Milne, “Polarizations and Grothendieck's standard conjectures”, Ann. of Math. (2), 155:2 (2002), 599–610 | DOI | MR | Zbl

[17] J. S. Milne, “Lefschetz motives and the Tate conjecture”, Compos. Math., 117:1 (1999), 45–76 | DOI | MR | Zbl

[18] K. Künnemann, “Height pairings for algebraic cycles on Abelian varieties”, Ann. Sci. École Norm. Sup. (4), 34:4 (2001), 503–523 | DOI | MR | Zbl

[19] K. Künnemann, “Projective regular models for Abelian varieties, semistable reduction, and the height pairing”, Duke Math. J., 95:1 (1998), 161–212 | DOI | MR | Zbl

[20] F. Hazama, “Algebraic cycles on nonsimple Abelian varieties”, Duke Math. J., 58:1 (1989), 31–37 | DOI | MR | Zbl

[21] S. G. Tankeev, “Cycles on Abelian varieties and exceptional numbers”, Izv. Math., 60:2 (1996), 391–424 | DOI

[22] A. Grothendieck, “Modèles de Néron et monodromie”, Groupes de monodromie en géométrie algébrique, Séminaire de géométrie algébrique du Bois-Marie 1967–1969 (SGA 7 I), Lecture Notes in Math., 288, Springer-Verlag, Berlin–New York, 1972, Exp. No. IX, 313–523 | DOI | MR | Zbl

[23] G. Kempf, F. Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Math., 339, Springer-Verlag, Berlin–New York, 1973 | DOI | MR | Zbl

[24] C. Consani, “The local monodromy as a generalized algebraic correspondence”, Doc. Math., 4 (1999), 65–108 | MR | Zbl

[25] P. Deligne, “Théorie de Hodge. III”, Inst. Hautes Études Sci. Publ. Math., 44 (1974), 5–77 | DOI | MR | Zbl

[26] S. G. Tankeev, “On algebraic isomorphisms of rational cohomology of a Künneman compactification of the Néron minimal model”, Sib. Èlektron. Mat. Izv., 17 (2020), 89–125 | DOI | MR | Zbl

[27] N. Bourbaki, Éléments de mathématique. Algèbre. Ch. 10. Algèbre homologique, Masson, Paris, 1980 | MR | Zbl

[28] S. Lang, Abelian varieties, Reprint of the 1959 original, Springer-Verlag, New York–Berlin, 1983 | DOI | MR | Zbl

[29] J. Giraud, Cohomologie non abélienne, Grundlehren Math. Wiss., 179, Springer-Verlag, Berlin–New York, 1971 | DOI | MR | Zbl

[30] D. A. Cox, J. B. Little, and H. K. Schenck, Toric varieties, Grad. Stud. Math., 124, Amer. Math. Soc., Providence, RI, 2011 | DOI | MR | Zbl

[31] D. Bertrand and B. Edixhoven, “Pink's conjecture on unlikely intersections and families of semi-Abelian varieties”, J. Éc. polytech. Math., 7 (2020), 711–742 | DOI | MR | Zbl

[32] K. Künnemann, “Algebraic cycles on toric fibrations over abelian varieties”, Math. Z., 232:3 (1999), 427–435 | DOI | MR | Zbl

[33] K. Kodaira and D. C. Spencer, “On deformations of complex analytic structures. I”, Ann. of Math. (2), 67:2 (1958), 328–401 ; II, 67:3, 403–466 ; III. Stability theorems for complex structures, 71:1 (1960), 43–76 | DOI | MR | Zbl | DOI | Zbl | DOI | MR | Zbl

[34] V. I. Danilov, “The geometry of toric varieties”, Russian Math. Surveys, 33:2 (1978), 97–154 | DOI

[35] U. Bruzzo, Introduction to toric geometry, Sc. Int. Super. Studi Avanzati, Ist. Naz. Fis. Nucl., Trieste, 2014

[36] J.-P. Brasselet, Introduction to toric varieties, Publ. Mat. IMPA, Inst. Nac. Mat. Pura Apl. (IMPA), Rio de Janeiro, 2008 https://impa.br/wp-content/uploads/2017/04/PM_15.pdf

[37] J. S. Milne, Étale cohomology, Princeton Math. Ser., 33, Princeton Univ. Press, Princeton, NJ, 1980 | MR | Zbl

[38] B. Totaro, “Chow groups, Chow cohomology, and linear varieties”, Forum Math. Sigma, 2 (2014), e17 | DOI | MR | Zbl

[39] G. E. Bredon, Sheaf theory, McGraw-Hill Book Co., New York–Toronto–London, 1967 | MR | Zbl

[40] A. Grothendieck, “Sur quelques points d'algèbre homologique. I”, Tohoku Math. J. (2), 9:2 (1957), 119–184 ; II:3, 185–221 | DOI | MR | Zbl | DOI

[41] C. Voisin, Hodge theory and complex algebraic geometry, Transl. from the French, v. I, Cambridge Stud. Adv. Math., 76, Cambridge Univ. Press, Cambridge, 2002 ; v. II, 77, 2003 | DOI | MR | Zbl | DOI | MR | Zbl

[42] S. Zucker, “Hodge theory with degenerating coefficients: $L_2$ cohomology in the Poincaré metric”, Ann. of Math. (2), 109:3 (1979), 415–476 | DOI | MR | Zbl

[43] P. Deligne, “Théorie de Hodge. II”, Inst. Hautes Études Sci. Publ. Math., 40:1 (1971), 5–57 | DOI | MR | Zbl

[44] S. G. Tankeev, “On an inductive approach to the standard conjecture for a fibred complex variety with strong semistable degeneracies”, Izv. Math., 81:6 (2017), 1253–1285 | DOI

[45] S. G. Tankeev, “On the standard conjecture for compactifications of Néron models of 4-dimensional Abelian varieties”, Izv. Math., 86:4 (2022), 797–835 | DOI

[46] C. H. Clemens, “Degeneration of Kähler manifolds”, Duke Math. J., 44:2 (1977), 215–290 | DOI | MR | Zbl

[47] B. B. Gordon, “Algebraic cycles and the Hodge structure of a Kuga fiber variety”, Trans. Amer. Math. Soc., 336:2 (1993), 933–947 | DOI | MR | Zbl

[48] Yu. G. Zarkhin, “Weights of simple Lie algebras in the cohomology of algebraic varieties”, Math. USSR-Izv., 24:2 (1985), 245–281 | DOI

[49] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie, Ch. 1, Actualités Sci. Indust., 1285, 2nd éd., Hermann, Paris, 1971 ; Ch. 2, 3, 1349, 1972 ; Ch. 4–6, 1337, 1968 ; Ch. 7, 8, 1364, 1975 | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl

[50] N. Bourbaki, Éléments de mathématique. Livre II: Algèbre, Ch. 7: Modules sur les anneaux principaux, Actualités Sci. Indust., 1179, Hermann, Paris, 1952 ; Ch. 8: Modules et anneaux semi-simples, 1261, 1958 ; Ch. 9: Formes sesquilinéaires et formes quadratiques, 1272, 1959 | MR | Zbl | MR | Zbl | MR | Zbl

[51] R. O. Wells, Jr., Differential analysis on complex manifolds, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1973 | MR | Zbl

[52] H. Lange and C. Birkenhake, Complex Abelian varieties, Grundlehren Math. Wiss., 302, Springer-Verlag, Berlin, 1992 | DOI | MR | Zbl