Toric geometry and the standard conjecture for a~compactification of the N\'eron model of Abelian variety
Izvestiya. Mathematics , Tome 89 (2025) no. 1, pp. 140-171
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that if
$\mathcal M\to C$ is the Néron minimal model of a principally polarized $(d-1)$-dimensional Abelian variety
$\mathcal M_\eta$ over the field $\kappa(\eta)$ of rational functions of a smooth projective curve $C$,
$$
\operatorname{End}_{\overline{\kappa(\eta)}} (\mathcal M_\eta\otimes_{\kappa(\eta)}\overline{\kappa(\eta)})=\mathbb Z,
$$
the complexification of the Lie algebra of the Hodge group
$\operatorname{Hg}(M_\eta\otimes_{\kappa(\eta)}\mathbb {C})$ is a simple Lie algebra of type $C_{d-1}$, all bad reductions of the Abelian variety
$\mathcal M_\eta$ are semi-stable,
for any places $\delta,\delta'$ of bad reductions
the $\mathbb Q$-space of Hodge cycles on the product
$\operatorname{Alb}(\overline{\mathcal M_\delta^0})\,\times \, \operatorname{Alb}(\overline{\mathcal M_{\delta'}^0})$ of Albanese varieties
is generated by classes of algebraic cycles,
then
there exists a finite ramified covering $\widetilde{C}\to C$ such that, for any Künnemann compactification $\widetilde{X}$
of the Néron minimal model of the Abelian variety $\mathcal M_\eta\otimes_{\kappa(\eta)}\kappa(\widetilde{\eta})$,
the Grothendieck standard conjecture $B(\widetilde{X})$ of Lefschetz type is true.
Keywords:
toric geometry, Grothendieck standard conjecture of Lefschetz type, Abelian variety,
Künnemann compactification of Néron model, Hodge conjecture.
@article{IM2_2025_89_1_a6,
author = {S. G. Tankeev},
title = {Toric geometry and the standard conjecture for a~compactification of the {N\'eron} model of {Abelian} variety},
journal = {Izvestiya. Mathematics },
pages = {140--171},
publisher = {mathdoc},
volume = {89},
number = {1},
year = {2025},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a6/}
}
TY - JOUR AU - S. G. Tankeev TI - Toric geometry and the standard conjecture for a~compactification of the N\'eron model of Abelian variety JO - Izvestiya. Mathematics PY - 2025 SP - 140 EP - 171 VL - 89 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a6/ LA - en ID - IM2_2025_89_1_a6 ER -
S. G. Tankeev. Toric geometry and the standard conjecture for a~compactification of the N\'eron model of Abelian variety. Izvestiya. Mathematics , Tome 89 (2025) no. 1, pp. 140-171. http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a6/