On stability of weighted spanning tree degree enumerators
Izvestiya. Mathematics , Tome 89 (2025) no. 1, pp. 106-124
Voir la notice de l'article provenant de la source Math-Net.Ru
In [1] it was shown that the degree (vertex) spanning tree enumerator polynomial
of a connected graph $G$ is a real stable polynomial (that is, it does not vanish if all the
variables have positive imaginary parts) if and only if $G$ is a distance-hereditary graph.
We prove a similar characterization for weighted graphs.
With the help of this generalization, define the class of weighted distance-hereditary graphs.
Keywords:
weighted graphs, spanning trees, real stable polynomials, distance-hereditary graphs.
@article{IM2_2025_89_1_a4,
author = {P. K. Prozorov and D. D. Cherkashin},
title = {On stability of weighted spanning tree degree enumerators},
journal = {Izvestiya. Mathematics },
pages = {106--124},
publisher = {mathdoc},
volume = {89},
number = {1},
year = {2025},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a4/}
}
P. K. Prozorov; D. D. Cherkashin. On stability of weighted spanning tree degree enumerators. Izvestiya. Mathematics , Tome 89 (2025) no. 1, pp. 106-124. http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a4/