On stability of weighted spanning tree degree enumerators
Izvestiya. Mathematics , Tome 89 (2025) no. 1, pp. 106-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

In [1] it was shown that the degree (vertex) spanning tree enumerator polynomial of a connected graph $G$ is a real stable polynomial (that is, it does not vanish if all the variables have positive imaginary parts) if and only if $G$ is a distance-hereditary graph. We prove a similar characterization for weighted graphs. With the help of this generalization, define the class of weighted distance-hereditary graphs.
Keywords: weighted graphs, spanning trees, real stable polynomials, distance-hereditary graphs.
@article{IM2_2025_89_1_a4,
     author = {P. K. Prozorov and D. D. Cherkashin},
     title = {On stability of weighted spanning tree degree enumerators},
     journal = {Izvestiya. Mathematics },
     pages = {106--124},
     publisher = {mathdoc},
     volume = {89},
     number = {1},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a4/}
}
TY  - JOUR
AU  - P. K. Prozorov
AU  - D. D. Cherkashin
TI  - On stability of weighted spanning tree degree enumerators
JO  - Izvestiya. Mathematics 
PY  - 2025
SP  - 106
EP  - 124
VL  - 89
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a4/
LA  - en
ID  - IM2_2025_89_1_a4
ER  - 
%0 Journal Article
%A P. K. Prozorov
%A D. D. Cherkashin
%T On stability of weighted spanning tree degree enumerators
%J Izvestiya. Mathematics 
%D 2025
%P 106-124
%V 89
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a4/
%G en
%F IM2_2025_89_1_a4
P. K. Prozorov; D. D. Cherkashin. On stability of weighted spanning tree degree enumerators. Izvestiya. Mathematics , Tome 89 (2025) no. 1, pp. 106-124. http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a4/

[1] D. Cherkashin, F. Petrov, and P. Prozorov, “On stability of spanning tree degree enumerators”, Discrete Math., 346:12 (2023), 113629 | DOI | MR | Zbl

[2] D. G. Wagner, “Multivariate stable polynomials: theory and applications”, Bull. Amer. Math. Soc. (N.S.), 48:1 (2011), 53–84 | DOI | MR | Zbl

[3] P. Csikvári and Á. Schweitzer, “A short survey on stable polynomials, orientations and matchings”, Acta Math. Hungar., 166:1 (2022), 1–16 | DOI | MR | Zbl

[4] Young-Bin Choe, J. G. Oxley, A. D. Sokal, and D. G. Wagner, “Homogeneous multivariate polynomials with the half-plane property”, Adv. in Appl. Math., 32:1-2 (2004), 88–187 | DOI | MR | Zbl

[5] H.-J. Bandelt and H. M. Mulder, “Distance-hereditary graphs”, J. Combin. Theory Ser. B, 41:2 (1986), 182–208 | DOI | MR | Zbl

[6] A. Brandstädt, Van Bang Le, and J. P. Spinrad, Graph classes: a survey, SIAM Monogr. Discrete Math. Appl., SIAM, Philadelphia, PA, 1999 | DOI | MR | Zbl

[7] Sang-il Oum, “Rank-width and vertex-minors”, J. Combin. Theory Ser. B, 95:1 (2005), 79–100 | DOI | MR | Zbl

[8] P. Brändén and J. Huh, “Lorentzian polynomials”, Ann. of Math. (2), 192:3 (2020), 821–891 | DOI | MR | Zbl