Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2025_89_1_a4, author = {P. K. Prozorov and D. D. Cherkashin}, title = {On stability of weighted spanning tree degree enumerators}, journal = {Izvestiya. Mathematics }, pages = {106--124}, publisher = {mathdoc}, volume = {89}, number = {1}, year = {2025}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a4/} }
P. K. Prozorov; D. D. Cherkashin. On stability of weighted spanning tree degree enumerators. Izvestiya. Mathematics , Tome 89 (2025) no. 1, pp. 106-124. http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a4/
[1] D. Cherkashin, F. Petrov, and P. Prozorov, “On stability of spanning tree degree enumerators”, Discrete Math., 346:12 (2023), 113629 | DOI | MR | Zbl
[2] D. G. Wagner, “Multivariate stable polynomials: theory and applications”, Bull. Amer. Math. Soc. (N.S.), 48:1 (2011), 53–84 | DOI | MR | Zbl
[3] P. Csikvári and Á. Schweitzer, “A short survey on stable polynomials, orientations and matchings”, Acta Math. Hungar., 166:1 (2022), 1–16 | DOI | MR | Zbl
[4] Young-Bin Choe, J. G. Oxley, A. D. Sokal, and D. G. Wagner, “Homogeneous multivariate polynomials with the half-plane property”, Adv. in Appl. Math., 32:1-2 (2004), 88–187 | DOI | MR | Zbl
[5] H.-J. Bandelt and H. M. Mulder, “Distance-hereditary graphs”, J. Combin. Theory Ser. B, 41:2 (1986), 182–208 | DOI | MR | Zbl
[6] A. Brandstädt, Van Bang Le, and J. P. Spinrad, Graph classes: a survey, SIAM Monogr. Discrete Math. Appl., SIAM, Philadelphia, PA, 1999 | DOI | MR | Zbl
[7] Sang-il Oum, “Rank-width and vertex-minors”, J. Combin. Theory Ser. B, 95:1 (2005), 79–100 | DOI | MR | Zbl
[8] P. Brändén and J. Huh, “Lorentzian polynomials”, Ann. of Math. (2), 192:3 (2020), 821–891 | DOI | MR | Zbl