Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2025_89_1_a3, author = {B. A. Plamenevskii and A. S. Poretskii and O. V. Sarafanov}, title = {Mathematical scattering theory in electromagnetic waveguides}, journal = {Izvestiya. Mathematics }, pages = {50--105}, publisher = {mathdoc}, volume = {89}, number = {1}, year = {2025}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a3/} }
TY - JOUR AU - B. A. Plamenevskii AU - A. S. Poretskii AU - O. V. Sarafanov TI - Mathematical scattering theory in electromagnetic waveguides JO - Izvestiya. Mathematics PY - 2025 SP - 50 EP - 105 VL - 89 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a3/ LA - en ID - IM2_2025_89_1_a3 ER -
B. A. Plamenevskii; A. S. Poretskii; O. V. Sarafanov. Mathematical scattering theory in electromagnetic waveguides. Izvestiya. Mathematics , Tome 89 (2025) no. 1, pp. 50-105. http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a3/
[1] B. A. Plamenevskii, A. S. Poretskii, and O. V. Sarafanov, “Mathematical scattering theory in electromagnetic waveguides”, Dokl. Phys., 67:3 (2023), 70–73 | DOI
[2] P. Lax and R. Phillips, Scattering theory, Pure Appl. Math., 26, Academic Press, New York–London, 1967 | MR
[3] M. Reed and B. Simon, Methods of modern mathematical physics, v. III, Academic Press, Inc., New York–London, 1979 | MR | Zbl
[4] D. R. Yafaev, Mathematical scattering theory. General theory, Transl. Math. Monogr., 105, Amer. Math. Soc., Providence, RI, 1992 | DOI | MR | Zbl
[5] D. R. Yafaev, Mathematical scattering theory. Analytic theory, Math. Surveys Monogr., 158, Amer. Math. Soc., Providence, RI, 2010 | DOI | MR | Zbl
[6] D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, Appl. Math. Sci., 93, 3rd ed., Springer, New York, 2013 | DOI | MR | Zbl
[7] P. Monk, Finite element methods for Maxwell's equations, Numer. Math. Sci. Comput., Oxford Univ. Press, New York, 2003 | DOI | MR | Zbl
[8] M. Sh. Birman and M. Z. Solomyak, “The selfadjoint Maxwell operator in arbitrary domains”, Leningrad Math. J., 1:1 (1990), 99–115
[9] L. A. Weinstein, The theory of diffraction and the factorization method (generalized Wiener–Hopf technique), Golden Press, Colorado, 1969
[10] E. I. Nefedov and A. T. Fialkovskii, Asymptotic theory of diffraction of electromagnetic waves on finite structures, Nauka, Moscow, 1972 (Russian)
[11] R. Mittra and S. W. Lee, Analytical techniques in the theory of guided waves, Macmillan Series in Electrical Science, The Macmillan Co., New York; Collier–Macmillan Ltd., London, 1971 | Zbl
[12] P. Exner and H. Kovar̆ík, Quantum waveguides, Theoret. Math. Phys., 22, Springer, Cham, 2015 | DOI | MR | Zbl
[13] S. Nazarov and B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, De Gruyter Exp. Math., 13, Walter de Gruyter Co., Berlin, 1994 | DOI | MR | Zbl
[14] A. S. Il'inskii, V. V. Kravtsov, and A. G. Sveshnikov, Mathematical models of electrodynamics, University textbook, Vysshaya Shkola, Moscow, 1991 (Russian)
[15] T. N. Galishnikova and A. S. Il'inskii, Method of integral equations in problems of wave diffraction, MAKS Press, Moscow, 2013 (Russian)
[16] A. N. Bogolyubov, A. L. Delitsyn, and A. G. Sveshnikov, “On the problem of excitation of a waveguide filled with an inhomogeneous medium”, Comput. Math. Math. Phys., 39:11 (1999), 1794–1813
[17] A. N. Bogolyubov, A. L. Delitsyn, and A. G. Sveshnikov, “On conditions for the solvability of the problem of the excitation of a radio waveguide”, Dokl. Math., 61:1 (2000), 126–129
[18] A. L. Delitsyn, “The statement and solubility of boundary-value problems for Maxwell's equations in a cylinder”, Izv. Math., 71:3 (2007), 495–544 | DOI
[19] P. E. Krasnushkin and E. I. Moiseev, “The excitation of forced oscillations in a stratified radio-waveguide”, Soviet Phys. Dokl., 27:6 (1982), 458–460
[20] B. A. Plamenevskiĭ and A. S. Poretskiĭ, “The Maxwell system in waveguides with several cylindrical outlets to infinity and nonhomogeneous anisotropic filling”, St. Petersburg Math. J., 29:2 (2018), 289–314 | DOI
[21] C. I. Goldstein, “Eigenfunction expansions associated with the Laplacian for certain domains with infinite boundaries. I”, Trans. Amer. Math. Soc., 135 (1969), 1–31 ; II. Applications to scattering theory, 33–50 | DOI | MR | Zbl | DOI | MR
[22] W. C. Lyford, “A two Hilbert space scattering theorem”, Math. Ann., 217:3 (1975), 257–261 | DOI | MR | Zbl
[23] W. C. Lyford, “Spectral analysis of the Laplacian in domains with cylinders”, Math. Ann., 218:3 (1975), 229–251 | DOI | MR | Zbl
[24] W. C. Lyford, “Asymptotic energy propagation and scattering of waves in waveguides with cylinders”, Math. Ann., 219:3 (1976), 193–212 | DOI | MR | Zbl
[25] R. Picard and S. Seidler, “A remark on two Hilbert space scattering theory”, Math. Ann., 269:3 (1984), 411–415 | DOI | MR | Zbl
[26] D. Krejčiřík and R. Tiedra de Aldecoa, “The nature of the essential spectrum in curved quantum waveguides”, J. Phys. A, 37:20 (2004), 5449–5466 | DOI | MR | Zbl
[27] M. Melgaard, “Scattering properties for a pair of Schrödinger type operators on cylindrical domains”, Cent. Eur. J. Math., 5:1 (2007), 134–153 | DOI | MR | Zbl
[28] R. B. Melrose, The Atiyah–Patody–Singer index theorem, Res. Notes Math., 4, A. K. Peters, Ltd., Wellesley, MA, 1993 | MR | Zbl
[29] T. Christiansen, “Scattering theory for manifolds with asymptotically cylindrical ends”, J. Func. Anal., 131:2 (1995), 499–530 | DOI | MR | Zbl
[30] R. Picard, “On the low frequency asymptotics in electromagnetic theory”, J. Reine Angew. Math., 354 (1984), 50–73 | DOI | MR | Zbl
[31] T. Ohmura, “A new formulation on the electromagnetic field”, Progr. Theoret. Phys., 16:6 (1956), 684–685 | DOI | Zbl
[32] I. C. Gudovich and S. G. Krein, Boundary value problems for overdetermined systems of partial differential equations, Diff. Uravn. Primen., no. 9, Inst. Physics Math. Acad. Sci. Lit.SSR, Vilnius, 1974 (Russian)
[33] B. A. Plamenevskii, A. S. Poretskii, and O. V. Sarafanov, “Mathematical scattering theory in quantum waveguides”, Dokl. Phys., 64:11 (2019), 430–433 | DOI
[34] B. A. Plamenevskii, A. S. Poretskii, and O. V. Sarafanov, “Mathematical scattering theory in quantum and acoustic waveguides”, J. Math. Sci. (N.Y.), 262:3 (2022), 329–357 | DOI
[35] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag New York, Inc., New York, 1966 | DOI | MR | Zbl
[36] B. A. Plamenevskii, “On spectral properties of elliptic problems in domains with cylindrical ends”, Nonlinear equations and spectral theory, Amer. Math. Soc. Transl. Ser. 2, 220, Adv. Math. Sci., 59, Amer. Math. Soc., Providence, RI, 2007, 123–139 | DOI | MR | Zbl
[37] M. S. Agranovich and M. I. Vishik, “Elliptic problems with a parameter and parabolic problems of general type”, Russian Math. Surveys, 19:3 (1964), 53–157 | DOI
[38] B. A. Plamenevskii and A. S. Poretskii, “Behavior of waveguide scattering matrices in a neighborhood of thresholds”, St. Petersburg Math. J., 30:2 (2019), 285–319 | DOI
[39] V. G. Maz'ja, Sobolev spaces, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1985 | DOI | MR | Zbl