Mathematical scattering theory in electromagnetic waveguides
Izvestiya. Mathematics , Tome 89 (2025) no. 1, pp. 50-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

A waveguide occupying a 3D domain $G$ with several cylindrical outlets to infinity is described by the non-stationary Maxwell system with conductive boundary conditions. Dielectric permittivity and magnetic permeability are assumed to be positive definite matrices $\varepsilon(x)$ and $\mu(x)$ depending on a point $x$ in $G$. At infinity, in each cylindrical outlet, the matrix-valued functions converge with exponential rate to matrix-valued functions that do not depend on the axial coordinate of the cylinder. For the corresponding stationary problem with spectral parameter, we define continuous spectrum eigenfunctions and the scattering matrix. The non-stationary Maxwell system is extended up to an equation of the form $i\,\partial_t \mathcal{U}(x,t)=\mathcal{A}(x,D_x)\mathcal{U}(x,t)$ with elliptic operator $\mathcal{A}(x,D_x)$. We associate with the equation a boundary value problem and, for an appropriate couple of such problems, construct the scattering theory. We calculate the wave operators, define the scattering operator, and describe its relation to the scattering matrix. From the obtained results we extract information about the original Maxwell system.
Keywords: non-stationary Maxwell system, waveguide, domain with several cylindrical outlets, scattering theory, principle of limiting absorption, wave operator, scattering operator, scattering matrix.
@article{IM2_2025_89_1_a3,
     author = {B. A. Plamenevskii and A. S. Poretskii and O. V. Sarafanov},
     title = {Mathematical scattering theory in electromagnetic waveguides},
     journal = {Izvestiya. Mathematics },
     pages = {50--105},
     publisher = {mathdoc},
     volume = {89},
     number = {1},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a3/}
}
TY  - JOUR
AU  - B. A. Plamenevskii
AU  - A. S. Poretskii
AU  - O. V. Sarafanov
TI  - Mathematical scattering theory in electromagnetic waveguides
JO  - Izvestiya. Mathematics 
PY  - 2025
SP  - 50
EP  - 105
VL  - 89
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a3/
LA  - en
ID  - IM2_2025_89_1_a3
ER  - 
%0 Journal Article
%A B. A. Plamenevskii
%A A. S. Poretskii
%A O. V. Sarafanov
%T Mathematical scattering theory in electromagnetic waveguides
%J Izvestiya. Mathematics 
%D 2025
%P 50-105
%V 89
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a3/
%G en
%F IM2_2025_89_1_a3
B. A. Plamenevskii; A. S. Poretskii; O. V. Sarafanov. Mathematical scattering theory in electromagnetic waveguides. Izvestiya. Mathematics , Tome 89 (2025) no. 1, pp. 50-105. http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a3/

[1] B. A. Plamenevskii, A. S. Poretskii, and O. V. Sarafanov, “Mathematical scattering theory in electromagnetic waveguides”, Dokl. Phys., 67:3 (2023), 70–73 | DOI

[2] P. Lax and R. Phillips, Scattering theory, Pure Appl. Math., 26, Academic Press, New York–London, 1967 | MR

[3] M. Reed and B. Simon, Methods of modern mathematical physics, v. III, Academic Press, Inc., New York–London, 1979 | MR | Zbl

[4] D. R. Yafaev, Mathematical scattering theory. General theory, Transl. Math. Monogr., 105, Amer. Math. Soc., Providence, RI, 1992 | DOI | MR | Zbl

[5] D. R. Yafaev, Mathematical scattering theory. Analytic theory, Math. Surveys Monogr., 158, Amer. Math. Soc., Providence, RI, 2010 | DOI | MR | Zbl

[6] D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, Appl. Math. Sci., 93, 3rd ed., Springer, New York, 2013 | DOI | MR | Zbl

[7] P. Monk, Finite element methods for Maxwell's equations, Numer. Math. Sci. Comput., Oxford Univ. Press, New York, 2003 | DOI | MR | Zbl

[8] M. Sh. Birman and M. Z. Solomyak, “The selfadjoint Maxwell operator in arbitrary domains”, Leningrad Math. J., 1:1 (1990), 99–115

[9] L. A. Weinstein, The theory of diffraction and the factorization method (generalized Wiener–Hopf technique), Golden Press, Colorado, 1969

[10] E. I. Nefedov and A. T. Fialkovskii, Asymptotic theory of diffraction of electromagnetic waves on finite structures, Nauka, Moscow, 1972 (Russian)

[11] R. Mittra and S. W. Lee, Analytical techniques in the theory of guided waves, Macmillan Series in Electrical Science, The Macmillan Co., New York; Collier–Macmillan Ltd., London, 1971 | Zbl

[12] P. Exner and H. Kovar̆ík, Quantum waveguides, Theoret. Math. Phys., 22, Springer, Cham, 2015 | DOI | MR | Zbl

[13] S. Nazarov and B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, De Gruyter Exp. Math., 13, Walter de Gruyter Co., Berlin, 1994 | DOI | MR | Zbl

[14] A. S. Il'inskii, V. V. Kravtsov, and A. G. Sveshnikov, Mathematical models of electrodynamics, University textbook, Vysshaya Shkola, Moscow, 1991 (Russian)

[15] T. N. Galishnikova and A. S. Il'inskii, Method of integral equations in problems of wave diffraction, MAKS Press, Moscow, 2013 (Russian)

[16] A. N. Bogolyubov, A. L. Delitsyn, and A. G. Sveshnikov, “On the problem of excitation of a waveguide filled with an inhomogeneous medium”, Comput. Math. Math. Phys., 39:11 (1999), 1794–1813

[17] A. N. Bogolyubov, A. L. Delitsyn, and A. G. Sveshnikov, “On conditions for the solvability of the problem of the excitation of a radio waveguide”, Dokl. Math., 61:1 (2000), 126–129

[18] A. L. Delitsyn, “The statement and solubility of boundary-value problems for Maxwell's equations in a cylinder”, Izv. Math., 71:3 (2007), 495–544 | DOI

[19] P. E. Krasnushkin and E. I. Moiseev, “The excitation of forced oscillations in a stratified radio-waveguide”, Soviet Phys. Dokl., 27:6 (1982), 458–460

[20] B. A. Plamenevskiĭ and A. S. Poretskiĭ, “The Maxwell system in waveguides with several cylindrical outlets to infinity and nonhomogeneous anisotropic filling”, St. Petersburg Math. J., 29:2 (2018), 289–314 | DOI

[21] C. I. Goldstein, “Eigenfunction expansions associated with the Laplacian for certain domains with infinite boundaries. I”, Trans. Amer. Math. Soc., 135 (1969), 1–31 ; II. Applications to scattering theory, 33–50 | DOI | MR | Zbl | DOI | MR

[22] W. C. Lyford, “A two Hilbert space scattering theorem”, Math. Ann., 217:3 (1975), 257–261 | DOI | MR | Zbl

[23] W. C. Lyford, “Spectral analysis of the Laplacian in domains with cylinders”, Math. Ann., 218:3 (1975), 229–251 | DOI | MR | Zbl

[24] W. C. Lyford, “Asymptotic energy propagation and scattering of waves in waveguides with cylinders”, Math. Ann., 219:3 (1976), 193–212 | DOI | MR | Zbl

[25] R. Picard and S. Seidler, “A remark on two Hilbert space scattering theory”, Math. Ann., 269:3 (1984), 411–415 | DOI | MR | Zbl

[26] D. Krejčiřík and R. Tiedra de Aldecoa, “The nature of the essential spectrum in curved quantum waveguides”, J. Phys. A, 37:20 (2004), 5449–5466 | DOI | MR | Zbl

[27] M. Melgaard, “Scattering properties for a pair of Schrödinger type operators on cylindrical domains”, Cent. Eur. J. Math., 5:1 (2007), 134–153 | DOI | MR | Zbl

[28] R. B. Melrose, The Atiyah–Patody–Singer index theorem, Res. Notes Math., 4, A. K. Peters, Ltd., Wellesley, MA, 1993 | MR | Zbl

[29] T. Christiansen, “Scattering theory for manifolds with asymptotically cylindrical ends”, J. Func. Anal., 131:2 (1995), 499–530 | DOI | MR | Zbl

[30] R. Picard, “On the low frequency asymptotics in electromagnetic theory”, J. Reine Angew. Math., 354 (1984), 50–73 | DOI | MR | Zbl

[31] T. Ohmura, “A new formulation on the electromagnetic field”, Progr. Theoret. Phys., 16:6 (1956), 684–685 | DOI | Zbl

[32] I. C. Gudovich and S. G. Krein, Boundary value problems for overdetermined systems of partial differential equations, Diff. Uravn. Primen., no. 9, Inst. Physics Math. Acad. Sci. Lit.SSR, Vilnius, 1974 (Russian)

[33] B. A. Plamenevskii, A. S. Poretskii, and O. V. Sarafanov, “Mathematical scattering theory in quantum waveguides”, Dokl. Phys., 64:11 (2019), 430–433 | DOI

[34] B. A. Plamenevskii, A. S. Poretskii, and O. V. Sarafanov, “Mathematical scattering theory in quantum and acoustic waveguides”, J. Math. Sci. (N.Y.), 262:3 (2022), 329–357 | DOI

[35] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag New York, Inc., New York, 1966 | DOI | MR | Zbl

[36] B. A. Plamenevskii, “On spectral properties of elliptic problems in domains with cylindrical ends”, Nonlinear equations and spectral theory, Amer. Math. Soc. Transl. Ser. 2, 220, Adv. Math. Sci., 59, Amer. Math. Soc., Providence, RI, 2007, 123–139 | DOI | MR | Zbl

[37] M. S. Agranovich and M. I. Vishik, “Elliptic problems with a parameter and parabolic problems of general type”, Russian Math. Surveys, 19:3 (1964), 53–157 | DOI

[38] B. A. Plamenevskii and A. S. Poretskii, “Behavior of waveguide scattering matrices in a neighborhood of thresholds”, St. Petersburg Math. J., 30:2 (2019), 285–319 | DOI

[39] V. G. Maz'ja, Sobolev spaces, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1985 | DOI | MR | Zbl