The split $5$-Casimir operator and the structure of
Izvestiya. Mathematics , Tome 89 (2025) no. 1, pp. 15-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, using the split Casimir operators, we find the decomposition of the antisymmetric part of the fifth power of the adjoint representation $\mathfrak{ad}^{\otimes 5}$. This decomposition contains, in addition to the representations that appeares in the decomposition of $\mathfrak{ad}^{\otimes 4}$, only one new representation of $X_5$. The universal dimension of this representation for exceptional Lie algebras was proposed in [1]. Our decomposition holds for all Lie algebras.
Keywords: adjoint representation, split Casimir operator, Vogel parameters.
@article{IM2_2025_89_1_a1,
     author = {A. P. Isaev and S. O. Krivonos},
     title = {The split $5${-Casimir} operator and the structure of},
     journal = {Izvestiya. Mathematics },
     pages = {15--25},
     publisher = {mathdoc},
     volume = {89},
     number = {1},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a1/}
}
TY  - JOUR
AU  - A. P. Isaev
AU  - S. O. Krivonos
TI  - The split $5$-Casimir operator and the structure of
JO  - Izvestiya. Mathematics 
PY  - 2025
SP  - 15
EP  - 25
VL  - 89
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a1/
LA  - en
ID  - IM2_2025_89_1_a1
ER  - 
%0 Journal Article
%A A. P. Isaev
%A S. O. Krivonos
%T The split $5$-Casimir operator and the structure of
%J Izvestiya. Mathematics 
%D 2025
%P 15-25
%V 89
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a1/
%G en
%F IM2_2025_89_1_a1
A. P. Isaev; S. O. Krivonos. The split $5$-Casimir operator and the structure of. Izvestiya. Mathematics , Tome 89 (2025) no. 1, pp. 15-25. http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a1/

[1] A. J. Macfarlane and H. Pfeiffer, “Representations of the exceptional and other Lie algebras with integral eigenvalues of the Casimir operator”, J. Phys. A, 36:9 (2003), 2305–2317 ; arXiv: math-ph/0208014 | DOI | MR | Zbl

[2] A. M. Cohen and R. de Man, “Computational evidence for Deligne's conjecture regarding exceptional Lie groups”, C. R. Acad. Sci. Paris Sér. I Math., 322:5 (1996), 427–432 | MR | Zbl

[3] J. M. Landsberg and L. Manivel, “A universal dimension formula for complex simple Lie algebras”, Adv. Math., 201:2 (2006), 379–407 | DOI | MR | Zbl

[4] M. Avetisyan, A. P. Isaev, S. O. Krivonos, and R. Mkrtchyan, “The uniform structure of $\mathfrak g^{\otimes 4}$”, Russ. J. Math. Phys., 31:3 (2024), 379–388 | DOI | MR | Zbl

[5] P. Deligne, “La série exceptionnelle de groupes de Lie”, C. R. Acad. Sci. Paris Sér. I Math., 322:4 (1996), 321–326 | MR | Zbl

[6] P. Vogel, The universal Lie algebra, Ecole d'été Grenoble, 1999 https://webusers.imj-prg.fr/~pierre.vogel/grenoble-99b.pdf

[7] A. P. Isaev and A. A. Provorov, “Projectors on invariant subspaces of representations $\operatorname{ad}^{\otimes 2}$ of Lie algebras $so(N)$ and $sp(2r)$ and Vogel parametrization”, Theoret. and Math. Phys., 206:1 (2021), 1–18 ; arXiv: 2012.00746 | DOI

[8] A. P. Isaev and S. O. Krivonos, “Split Casimir operator for simple Lie algebras, solutions of Yang–Baxter equations, and Vogel parameters”, J. Math. Phys., 62:8 (2021), 083503 ; arXiv: 2102.08258 | DOI | MR | Zbl

[9] A. P. Isaev, S. O. Krivonos, and A. A. Provorov, “Split Casimir operator for simple Lie algebras in the cube of $\mathrm{ad}$-representation and Vogel parameters”, Internat. J. Modern Phys. A, 38:6-7 (2023), 2350037 ; arXiv: 2212.14761 | DOI | MR

[10] A. P. Isaev and V. A. Rubakov, Theory of groups and symmetries. Finite groups, Lie groups, and Lie algebras, World Sci. Publ., Hackensack, NJ, 2018 | DOI | MR | Zbl