Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2025_89_1_a1, author = {A. P. Isaev and S. O. Krivonos}, title = {The split $5${-Casimir} operator and the structure of}, journal = {Izvestiya. Mathematics }, pages = {15--25}, publisher = {mathdoc}, volume = {89}, number = {1}, year = {2025}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a1/} }
A. P. Isaev; S. O. Krivonos. The split $5$-Casimir operator and the structure of. Izvestiya. Mathematics , Tome 89 (2025) no. 1, pp. 15-25. http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a1/
[1] A. J. Macfarlane and H. Pfeiffer, “Representations of the exceptional and other Lie algebras with integral eigenvalues of the Casimir operator”, J. Phys. A, 36:9 (2003), 2305–2317 ; arXiv: math-ph/0208014 | DOI | MR | Zbl
[2] A. M. Cohen and R. de Man, “Computational evidence for Deligne's conjecture regarding exceptional Lie groups”, C. R. Acad. Sci. Paris Sér. I Math., 322:5 (1996), 427–432 | MR | Zbl
[3] J. M. Landsberg and L. Manivel, “A universal dimension formula for complex simple Lie algebras”, Adv. Math., 201:2 (2006), 379–407 | DOI | MR | Zbl
[4] M. Avetisyan, A. P. Isaev, S. O. Krivonos, and R. Mkrtchyan, “The uniform structure of $\mathfrak g^{\otimes 4}$”, Russ. J. Math. Phys., 31:3 (2024), 379–388 | DOI | MR | Zbl
[5] P. Deligne, “La série exceptionnelle de groupes de Lie”, C. R. Acad. Sci. Paris Sér. I Math., 322:4 (1996), 321–326 | MR | Zbl
[6] P. Vogel, The universal Lie algebra, Ecole d'été Grenoble, 1999 https://webusers.imj-prg.fr/~pierre.vogel/grenoble-99b.pdf
[7] A. P. Isaev and A. A. Provorov, “Projectors on invariant subspaces of representations $\operatorname{ad}^{\otimes 2}$ of Lie algebras $so(N)$ and $sp(2r)$ and Vogel parametrization”, Theoret. and Math. Phys., 206:1 (2021), 1–18 ; arXiv: 2012.00746 | DOI
[8] A. P. Isaev and S. O. Krivonos, “Split Casimir operator for simple Lie algebras, solutions of Yang–Baxter equations, and Vogel parameters”, J. Math. Phys., 62:8 (2021), 083503 ; arXiv: 2102.08258 | DOI | MR | Zbl
[9] A. P. Isaev, S. O. Krivonos, and A. A. Provorov, “Split Casimir operator for simple Lie algebras in the cube of $\mathrm{ad}$-representation and Vogel parameters”, Internat. J. Modern Phys. A, 38:6-7 (2023), 2350037 ; arXiv: 2212.14761 | DOI | MR
[10] A. P. Isaev and V. A. Rubakov, Theory of groups and symmetries. Finite groups, Lie groups, and Lie algebras, World Sci. Publ., Hackensack, NJ, 2018 | DOI | MR | Zbl