The split $5$-Casimir operator and the structure of
Izvestiya. Mathematics , Tome 89 (2025) no. 1, pp. 15-25
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present paper, using the split Casimir operators,
we find the decomposition of the antisymmetric part of
the fifth power of the adjoint representation
$\mathfrak{ad}^{\otimes 5}$.
This decomposition contains, in addition to the representations that appeares
in the decomposition of $\mathfrak{ad}^{\otimes 4}$, only one new
representation of $X_5$. The universal dimension of this representation
for exceptional Lie algebras was proposed in [1].
Our decomposition holds for all Lie algebras.
Keywords:
adjoint representation, split Casimir operator, Vogel parameters.
@article{IM2_2025_89_1_a1,
author = {A. P. Isaev and S. O. Krivonos},
title = {The split $5${-Casimir} operator and the structure of},
journal = {Izvestiya. Mathematics },
pages = {15--25},
publisher = {mathdoc},
volume = {89},
number = {1},
year = {2025},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a1/}
}
A. P. Isaev; S. O. Krivonos. The split $5$-Casimir operator and the structure of. Izvestiya. Mathematics , Tome 89 (2025) no. 1, pp. 15-25. http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a1/