On the unification problem for $\mathrm{GLP}$
Izvestiya. Mathematics , Tome 89 (2025) no. 1, pp. 1-14
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that the polymodal provability logic $\mathrm{GLP}$, in a language with at least two modalities and one variable, has nullary unification type. More specifically, we show that the formula $[1]p$ does not have maximal unifiers, and exhibit an infinite complete set of unifiers for it. Further, we discuss the algorithmic problem of whether a given formula is unifiable in $\mathrm{GLP}$ and remark that this problem has a positive solution. Finally, we state the arithmetical analogues of the unification and admissibility problems for $\mathrm{GLP}$ and formulate a number of open questions.
Keywords:
provability logic
Mots-clés : unification, admissible rule.
Mots-clés : unification, admissible rule.
@article{IM2_2025_89_1_a0,
author = {L. D. Beklemishev},
title = {On the unification problem for $\mathrm{GLP}$},
journal = {Izvestiya. Mathematics },
pages = {1--14},
publisher = {mathdoc},
volume = {89},
number = {1},
year = {2025},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a0/}
}
L. D. Beklemishev. On the unification problem for $\mathrm{GLP}$. Izvestiya. Mathematics , Tome 89 (2025) no. 1, pp. 1-14. http://geodesic.mathdoc.fr/item/IM2_2025_89_1_a0/