On $T$-maps and ideals of antiderivatives of hypersurface singularities
Izvestiya. Mathematics , Tome 88 (2024) no. 6, pp. 1185-1220

Voir la notice de l'article provenant de la source Math-Net.Ru

Mather–Yau's theorem leads to an extensive study about moduli algebras of isolated hypersurface singularities. In this paper, the Tjurina ideal is generalized as $T$-principal ideals of certain $T$-maps for Noetherian algebras. Moreover, we introduce the ideal of antiderivatives of a $T$-map, which creates many new invariants. Firstly, we compute two new invariants associated with ideals of antiderivatives for ADE singularities and conjecture a general pattern of polynomial growth of these invariants. Secondly, the language of $T$-maps is applied to generalize the well-known theorem that the Milnor number of a semi quasi-homogeneous singularity is equal to that of its principal part. Finally, we use the $T$-fullness and $T$-dependence conditions to determine whether an ideal is a $T$-principal ideal and provide a constructive way of giving a generator of a $T$-principal ideal. As a result, the problem about reconstruction of a hypersurface singularitiy from its generalized moduli algebras is solved. It generalizes the results of Rodrigues in the cases of the $0$th and $1$st moduli algebra, which inspired our solution.
Keywords: isolated singularities, local rings, Kähler differential, semi quasi-homogeneous singularities, Tjurina ideals.
@article{IM2_2024_88_6_a8,
     author = {Quan Shi and Stephen S.-T. Yau and Huaiqing Zuo},
     title = {On $T$-maps and ideals of antiderivatives of hypersurface singularities},
     journal = {Izvestiya. Mathematics },
     pages = {1185--1220},
     publisher = {mathdoc},
     volume = {88},
     number = {6},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a8/}
}
TY  - JOUR
AU  - Quan Shi
AU  - Stephen S.-T. Yau
AU  - Huaiqing Zuo
TI  - On $T$-maps and ideals of antiderivatives of hypersurface singularities
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 1185
EP  - 1220
VL  - 88
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a8/
LA  - en
ID  - IM2_2024_88_6_a8
ER  - 
%0 Journal Article
%A Quan Shi
%A Stephen S.-T. Yau
%A Huaiqing Zuo
%T On $T$-maps and ideals of antiderivatives of hypersurface singularities
%J Izvestiya. Mathematics 
%D 2024
%P 1185-1220
%V 88
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a8/
%G en
%F IM2_2024_88_6_a8
Quan Shi; Stephen S.-T. Yau; Huaiqing Zuo. On $T$-maps and ideals of antiderivatives of hypersurface singularities. Izvestiya. Mathematics , Tome 88 (2024) no. 6, pp. 1185-1220. http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a8/