Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2024_88_6_a8, author = {Quan Shi and Stephen S.-T. Yau and Huaiqing Zuo}, title = {On $T$-maps and ideals of antiderivatives of hypersurface singularities}, journal = {Izvestiya. Mathematics }, pages = {1185--1220}, publisher = {mathdoc}, volume = {88}, number = {6}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a8/} }
TY - JOUR AU - Quan Shi AU - Stephen S.-T. Yau AU - Huaiqing Zuo TI - On $T$-maps and ideals of antiderivatives of hypersurface singularities JO - Izvestiya. Mathematics PY - 2024 SP - 1185 EP - 1220 VL - 88 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a8/ LA - en ID - IM2_2024_88_6_a8 ER -
Quan Shi; Stephen S.-T. Yau; Huaiqing Zuo. On $T$-maps and ideals of antiderivatives of hypersurface singularities. Izvestiya. Mathematics , Tome 88 (2024) no. 6, pp. 1185-1220. http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a8/
[1] V. I. Arnol'd, “Critical points of smooth functions and their normal forms”, Russian Math. Surveys, 30:5 (1975), 1–75 | DOI
[2] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, MA–London–Don Mills, ON, 1969 | MR | Zbl
[3] J. Àlvarez Montaner, J. Jeffries, and L. Núñez-Betancourt, “Bernstein–Sato polynomials in commutative algebra”, Commutative algebra, Springer, Cham, 2021, 1–76 | DOI | MR | Zbl
[4] Y. Boubakri, G.-M. Greuel, and T. Markwig, “Normal forms of hypersurface singularities in positive characteristic”, Mosc. Math. J., 11:4 (2011), 657–683 | DOI | MR | Zbl
[5] Bingyi Chen, N. Hussain, S. S.-T. Yau, and Huaiqing Zuo, “Variation of complex structures and variation of Lie algebras II: new Lie algebras arising from singularities”, J. Differential Geom., 115:3 (2020), 437–473 | DOI | MR | Zbl
[6] A. Dimca, R. Gondim, and G. Ilardi, “Higher order Jacobians, Hessians and Milnor algebras”, Collect. Math., 71:3 (2020), 407–425 | DOI | MR | Zbl
[7] D. Eisenbud, Commutative algebra. With a view toward algebraic geometry, Graduate Texts in Math., 150, Springer-Verlag, New York, 1995 | DOI | MR | Zbl
[8] R. Epure and M. Schulze, “Hypersurface singularities with monomial Jacobian ideal”, Bull. Lond. Math. Soc., 54:3 (2022), 1067–1081 | DOI | MR | Zbl
[9] G.-M. Greuel, C. Lossen, and E. Shustin, Introduction to singularities and deformations, Springer Monogr. Math., Springer, Berlin, 2007 | DOI | MR | Zbl
[10] G.-M. Greuel, C. Lossen, and E. Shustin, Corrections and additions to the book “Introduction to singularities and deformations”, preprint, 2023
[11] R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York–Heidelberg, 1977 | DOI | MR | Zbl
[12] N. Hussain, Zhiwen Liu, S. S.-T. Yau, and Huaiqing Zuo, “$k$th Milnor numbers and $k$th Tjurina numbers of weighted homogeneous singularities”, Geom. Dedicata, 217:2 (2023), 34 | DOI | MR | Zbl
[13] N. Hussain, Guorui Ma, S. S.-T. Yau, and Huaiqing Zuo, “Higher Nash blow-up local algebras of singularities and its derivation Lie algebras”, J. Algebra, 618 (2023), 165–194 | DOI | MR | Zbl
[14] N. Hussain, S. S.-T. Yau, and Huaiqing Zuo, “Inequality conjectures on derivations of local $k$th Hessain algebras associated to isolated hypersurface singularities”, Math. Z., 298:3-4 (2021), 1813–1829 | DOI | MR | Zbl
[15] J. Igusa, An introduction to the theory of local zeta functions, AMS/IP Stud. Adv. Math., 14, Amer. Math. Soc., Providence, RI; Int. Press, Cambridge, MA, 2000 | DOI | MR | Zbl
[16] H. Matsumura, Commutative algebra, Math. Lecture Note Ser., 56, 2nd ed., Benjamin/Cummings Publishing Co., Inc., Reading, MA, 1980 | MR | Zbl
[17] J. N. Mather and S. S.-T. Yau, “Classification of isolated hypersurface singularities by their moduli algebras”, Invent. Math., 69:2 (1982), 243–251 | DOI | MR | Zbl
[18] Guorui Ma, S. S.-T. Yau, and Huaiqing Zuo, “$k$-th singular locus moduli algebras of singularities and their derivation Lie algebras”, J. Math. Phys., 64:3 (2023), 031701 | DOI | MR | Zbl
[19] J. H. Olmedo Rodrigues, “On Tjurina ideals of hypersurface singularities”, J. Commut. Algebra, 15:2 (2023), 261–274 | DOI | MR | Zbl
[20] J. H. Olmedo Rodrigues, “Reconstruction of a hypersurface singularity from its moduli algebra”, Res. Math. Sci., 11:1 (2024), 12 | DOI | MR | Zbl
[21] J. J. Rotman, Advanced modern algebra, Grad. Stud. Math., 114, 2nd ed., Amer. Math. Soc., Providence, RI, 2010 | DOI | MR | Zbl
[22] D. van Straten, The spectrum of hypersurface singularities, 2020, arXiv: 2003.00519
[23] S. S.-T. Yau, “A necessary and sufficient condition for a local commutative algebra to be a moduli algebra: weighted homogeneous case”, Complex analytic singularities, Adv. Stud. Pure Math., 8, North-Holland Publishing Co., Amsterdam, 1987, 687–697 | DOI | MR | Zbl