Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2024_88_6_a7, author = {V. V. Kozlov}, title = {On the {Poincar\'{e}} problem of the third integral of the equations of rotation of a heavy asymmetric top}, journal = {Izvestiya. Mathematics }, pages = {1173--1184}, publisher = {mathdoc}, volume = {88}, number = {6}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a7/} }
TY - JOUR AU - V. V. Kozlov TI - On the Poincar\'{e} problem of the third integral of the equations of rotation of a heavy asymmetric top JO - Izvestiya. Mathematics PY - 2024 SP - 1173 EP - 1184 VL - 88 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a7/ LA - en ID - IM2_2024_88_6_a7 ER -
V. V. Kozlov. On the Poincar\'{e} problem of the third integral of the equations of rotation of a heavy asymmetric top. Izvestiya. Mathematics , Tome 88 (2024) no. 6, pp. 1173-1184. http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a7/
[1] H. Poincaré, Les méthodes nouvelles de la mécanique céleste, v. I, Gauthier-Villars, Paris, 1892 | MR | Zbl
[2] Ed. Husson, “Sur un théorème de M. Poincaré, relativement au mouvement d'un solide pesant”, Acta Math., 31:1 (1908), 71–88 | DOI | MR | Zbl
[3] V. V. Kozlov, “The geometry of the “action–angle” variables in the Euler–Poinsot problem”, Vestnik Moskov. Univ. Ser. I Mat. Meh., 29:5 (1974), 74–79 (Russian) | MR | Zbl
[4] V. V. Kozlov, “Non-existence of an additional analytic integral in the problem of the motion of a unsymmetric heavy solid about a fixed point”, Vestnik Moskov. Univ. Ser. I Mat. Meh., 30:1 (1975), 105–110 (Russian) | MR | Zbl
[5] V. V. Kozlov, Methods of qualitative analysis in rigid body dynamics, 2nd ed., Regulyarnaya i Khaotichaskaya Dinamika, Moscow–Izhevsk, 2000 (Russian) | MR | Zbl
[6] S. L. Ziglin, “Branching of solutions and nonexistence of first integrals in Hamiltonian mechanics. I”, Funct. Anal. Appl., 16:3 (1982), 181–189 ; II,, 17:1 (1983), 6–17 | DOI | DOI
[7] V. V. Kozlov, “Nonexistence of analytic integrals near equilibrium positions of Hamiltonian systems”, Moscow Univ. Mech. Bull., 31 (1976), 35–39
[8] T. V. Sal'nikova, “Nonintegrability of perturbed Lagrange problem”, Moscow Univ. Mech. Bull., 39:4 (1984), 32–39
[9] V. V. Kozlov and D. V. Treshchev, “Nonintegrability of general problem of rotation of a dynamically symmetrical heavy rigid body with a fixed point”, Moscow Univ. Mech. Bull., 41:1 (1986), 11–16 | Zbl
[10] S. A. Dovbysh, “Splitting of separatrices for unstable uniform rotations and nonintegrability of perturbed Lagrange problem”, Moscow Univ. Mech. Bull., 45:3 (1990), 33–39 | Zbl
[11] S. V. Bolotin, “Variational methods for constructing chaotic motions in rigid-body dynamics”, J. Appl. Math. Mech., 56:2 (1992), 198–205 | DOI | Zbl
[12] S. L. Ziglin, “The absence of an additional real-analytic first integral in some problems of dynamics”, Funct. Anal. Appl., 31:1 (1997), 3–9 | DOI
[13] A. V. Borisov and I. S. Mamaev, Rigid body dynamics Hamiltonian methods, integrability, chaos, 2nd ed., Regulyarnaya i Khaotichaskaya Dinamika, Moscow–Izhevsk, 2005 (Russian) | MR | Zbl
[14] Éd. Husson, “Recherche des intégrales algébriques dans le mouvement d'un solide pesant autour d'un point fixe”, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. (2), 8 (1906), 73–152 | DOI | MR | Zbl
[15] A. I. Dokshevich, Closed-form solutions of the Euler–Poisson equations, Naukova Dumka, Kiev, 1992 (Russian) | MR