Residually linear abstract groupoids
Izvestiya. Mathematics , Tome 88 (2024) no. 6, pp. 1154-1172.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of residually linear groupoids. We characterize this class in analogy with the group-theoretic setting. Various properties are proved and a relationship with residual finiteness is investigated. From a categorical point of view, our approach extends some well-known results in the theory of discrete groups, due mainly to Mal'cev and Menal. Finally, as an application, we show that the character groupoid of the Hopf algebroid of representative functions of a transitive groupoid is always residually linear.
Keywords: residually linear groups, residual finiteness, Hopf algebroid of representative functions, character groupoid.
@article{IM2_2024_88_6_a6,
     author = {K. Draoui and H. Choulli and H. Mouanis},
     title = {Residually linear abstract groupoids},
     journal = {Izvestiya. Mathematics },
     pages = {1154--1172},
     publisher = {mathdoc},
     volume = {88},
     number = {6},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a6/}
}
TY  - JOUR
AU  - K. Draoui
AU  - H. Choulli
AU  - H. Mouanis
TI  - Residually linear abstract groupoids
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 1154
EP  - 1172
VL  - 88
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a6/
LA  - en
ID  - IM2_2024_88_6_a6
ER  - 
%0 Journal Article
%A K. Draoui
%A H. Choulli
%A H. Mouanis
%T Residually linear abstract groupoids
%J Izvestiya. Mathematics 
%D 2024
%P 1154-1172
%V 88
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a6/
%G en
%F IM2_2024_88_6_a6
K. Draoui; H. Choulli; H. Mouanis. Residually linear abstract groupoids. Izvestiya. Mathematics , Tome 88 (2024) no. 6, pp. 1154-1172. http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a6/

[1] R. Brown, “From groups to groupoids: a brief survey”, Bull. London Math. Soc., 19:2 (1987), 113–134 | DOI | MR | Zbl

[2] H. Brandt, “Über eine Verallgemeinerung des Gruppenbegriffes”, Math. Ann., 96:1 (1927), 360–366 | DOI | MR | Zbl

[3] P. J. Higgins, Notes on categories and groupoids, Van Nostrand Rienhold Math. Stud., 32, Van Nostrand Reinhold Co., London–New York–Melbourne, 1971 | MR | Zbl

[4] C. Ehresmann, “Gattungen von lokalen Strukturen”, Jber. Deutsch. Math.-Verein., 60 (1957), 49–77 | MR | Zbl

[5] J. J. Barbarán Sánchez and L. El Kaoutit, “Linear representations and Frobenius morphisms of groupoids”, SIGMA, 15 (2019), 019 | DOI | MR | Zbl

[6] K. W. Gruenberg, “Residual properties of infinite soluble groups”, Proc. London Math. Soc. (3), 7 (1957), 29–62 | DOI | MR | Zbl

[7] A. I. Mal'cev, “On the faithful representation of infinite groups by matrices”, Amer. Math. Soc. Transl. Ser. 2, 45, Amer. Math. Soc., Providence, RI, 1965, 1–18 | DOI

[8] W. Magnus, “Residually finite groups”, Bull. Amer. Math. Soc., 75 (1969), 305–316 | DOI | MR | Zbl

[9] D. Segal, “Residually finite groups”, Groups–Canberra 1989, Lecture Notes in Math., 1456, Springer-Verlag, Berlin, 1990, 85–95 | DOI | MR | Zbl

[10] P. Menal, “Residual linearity for certain nilpotent groups”, Proc. Amer. Math. Soc., 68:1 (1978), 27–31 | DOI | MR | Zbl

[11] A. Robert, Introduction to the representation theory of compact and locally compact groups, London Math. Soc. Lecture Note Ser., 80, Cambridge Univ. Press, Cambridge–New York, 1983 | DOI | MR | Zbl

[12] A. Joyal and R. Street, “An introduction to Tannaka duality and quantum groups”, Category theory (Como 1990), Lecture Notes in Math., 1488, Springer-Verlag, Berlin, 1991, 413–492 | DOI | MR | Zbl

[13] H. Choulli, K. Draoui, and H. Mouanis, “Residually linear groups”, Proc. Jangjeon Math. Soc., 27:2 (2024), 271–288 | MR | Zbl

[14] M. Amini, “Tannak–Krein duality for compact groupoids II, duality”, Oper. Matrices, 4:4 (2010), 573–592 | DOI | MR | Zbl

[15] S. Mac Lane, Categories for the working mathematician, Grad. Texts in Math., 5, Reprint of the 2nd ed., Springer-Verlag, New York, 2013 | DOI | MR | Zbl

[16] E. Abe, Hopf algebras, Transl. from the Japan., Cambridge Tracts in Math., 74, Cambridge Univ. Press, Cambridge–New York, 1980 | MR | Zbl

[17] H.-J. Baues and M. Jibladze, “Classification of Abelian track categories”, $K$-theory, 25:3 (2002), 299–311 | DOI | MR | Zbl

[18] A. Paques and T. Tamusiunas, “The Galois correspondence theorem for groupoid actions”, J. Algebra, 509 (2018), 105–123 | DOI | MR | Zbl

[19] F. Komura, “Quotients of Étale groupoids and the abelianizations of groupoid $C^*$-algebras”, J. Aust. Math. Soc., 111:1 (2021), 56–75 | DOI | MR | Zbl

[20] L. El Kaoutit and L. Spinosa, “On Burnside theory for groupoids”, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 66(114):1 (2023), 41–87 | MR | Zbl

[21] L. El Kaoutit, Representative functions on discrete groupoids and duality with Hopf algebroids, 2013, arXiv: 1311.3109v2

[22] L. El Kaoutit, “On geometrically transitive Hopf algebroids”, J. Pure Appl. Algebra, 222:11 (2018), 3483–3520 | DOI | MR | Zbl

[23] L. El Kaoutit and J. Gómez-Torrecillas, “On the finite dual of a cocommutative Hopf algebroid. Application to linear differential matrix equations and Picard–Vessiot theory”, Bull. Belg. Math. Soc. Simon Stevin, 28:1 (2021), 53–121 | DOI | MR | Zbl

[24] A. J. Berrick, “Groups with no nontrivial linear representations”, Bull. Aust. Math. Soc., 50:1 (1994), 1–11 | DOI | MR | Zbl