Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2024_88_6_a6, author = {K. Draoui and H. Choulli and H. Mouanis}, title = {Residually linear abstract groupoids}, journal = {Izvestiya. Mathematics }, pages = {1154--1172}, publisher = {mathdoc}, volume = {88}, number = {6}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a6/} }
K. Draoui; H. Choulli; H. Mouanis. Residually linear abstract groupoids. Izvestiya. Mathematics , Tome 88 (2024) no. 6, pp. 1154-1172. http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a6/
[1] R. Brown, “From groups to groupoids: a brief survey”, Bull. London Math. Soc., 19:2 (1987), 113–134 | DOI | MR | Zbl
[2] H. Brandt, “Über eine Verallgemeinerung des Gruppenbegriffes”, Math. Ann., 96:1 (1927), 360–366 | DOI | MR | Zbl
[3] P. J. Higgins, Notes on categories and groupoids, Van Nostrand Rienhold Math. Stud., 32, Van Nostrand Reinhold Co., London–New York–Melbourne, 1971 | MR | Zbl
[4] C. Ehresmann, “Gattungen von lokalen Strukturen”, Jber. Deutsch. Math.-Verein., 60 (1957), 49–77 | MR | Zbl
[5] J. J. Barbarán Sánchez and L. El Kaoutit, “Linear representations and Frobenius morphisms of groupoids”, SIGMA, 15 (2019), 019 | DOI | MR | Zbl
[6] K. W. Gruenberg, “Residual properties of infinite soluble groups”, Proc. London Math. Soc. (3), 7 (1957), 29–62 | DOI | MR | Zbl
[7] A. I. Mal'cev, “On the faithful representation of infinite groups by matrices”, Amer. Math. Soc. Transl. Ser. 2, 45, Amer. Math. Soc., Providence, RI, 1965, 1–18 | DOI
[8] W. Magnus, “Residually finite groups”, Bull. Amer. Math. Soc., 75 (1969), 305–316 | DOI | MR | Zbl
[9] D. Segal, “Residually finite groups”, Groups–Canberra 1989, Lecture Notes in Math., 1456, Springer-Verlag, Berlin, 1990, 85–95 | DOI | MR | Zbl
[10] P. Menal, “Residual linearity for certain nilpotent groups”, Proc. Amer. Math. Soc., 68:1 (1978), 27–31 | DOI | MR | Zbl
[11] A. Robert, Introduction to the representation theory of compact and locally compact groups, London Math. Soc. Lecture Note Ser., 80, Cambridge Univ. Press, Cambridge–New York, 1983 | DOI | MR | Zbl
[12] A. Joyal and R. Street, “An introduction to Tannaka duality and quantum groups”, Category theory (Como 1990), Lecture Notes in Math., 1488, Springer-Verlag, Berlin, 1991, 413–492 | DOI | MR | Zbl
[13] H. Choulli, K. Draoui, and H. Mouanis, “Residually linear groups”, Proc. Jangjeon Math. Soc., 27:2 (2024), 271–288 | MR | Zbl
[14] M. Amini, “Tannak–Krein duality for compact groupoids II, duality”, Oper. Matrices, 4:4 (2010), 573–592 | DOI | MR | Zbl
[15] S. Mac Lane, Categories for the working mathematician, Grad. Texts in Math., 5, Reprint of the 2nd ed., Springer-Verlag, New York, 2013 | DOI | MR | Zbl
[16] E. Abe, Hopf algebras, Transl. from the Japan., Cambridge Tracts in Math., 74, Cambridge Univ. Press, Cambridge–New York, 1980 | MR | Zbl
[17] H.-J. Baues and M. Jibladze, “Classification of Abelian track categories”, $K$-theory, 25:3 (2002), 299–311 | DOI | MR | Zbl
[18] A. Paques and T. Tamusiunas, “The Galois correspondence theorem for groupoid actions”, J. Algebra, 509 (2018), 105–123 | DOI | MR | Zbl
[19] F. Komura, “Quotients of Étale groupoids and the abelianizations of groupoid $C^*$-algebras”, J. Aust. Math. Soc., 111:1 (2021), 56–75 | DOI | MR | Zbl
[20] L. El Kaoutit and L. Spinosa, “On Burnside theory for groupoids”, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 66(114):1 (2023), 41–87 | MR | Zbl
[21] L. El Kaoutit, Representative functions on discrete groupoids and duality with Hopf algebroids, 2013, arXiv: 1311.3109v2
[22] L. El Kaoutit, “On geometrically transitive Hopf algebroids”, J. Pure Appl. Algebra, 222:11 (2018), 3483–3520 | DOI | MR | Zbl
[23] L. El Kaoutit and J. Gómez-Torrecillas, “On the finite dual of a cocommutative Hopf algebroid. Application to linear differential matrix equations and Picard–Vessiot theory”, Bull. Belg. Math. Soc. Simon Stevin, 28:1 (2021), 53–121 | DOI | MR | Zbl
[24] A. J. Berrick, “Groups with no nontrivial linear representations”, Bull. Aust. Math. Soc., 50:1 (1994), 1–11 | DOI | MR | Zbl