Superposition of layers of cubic lattice
Izvestiya. Mathematics , Tome 88 (2024) no. 6, pp. 1138-1153.

Voir la notice de l'article provenant de la source Math-Net.Ru

The cube is the Dirichlet–Voronoi cell of the integer lattice $Z^n$. We study the family of $(n+1)$-dimensional lattices $L_Z^{n+1}(h)$ obtained by superposition of layers of the lattice $Z^n$ and depending on the distance $h$ between the layers. The quadratic forms corresponding to these lattices generate a family of forms $f_h$. If $h$ varies from 0 to infinity, the forms $f_h$ pierce the cone of positive quadratic forms from one its boundary to another boundary and pass through a series of edge-forms.
Keywords: cubic lattice, superposition of layers, Dirichlet–Voronoi cells.
@article{IM2_2024_88_6_a5,
     author = {V. P. Grishukhin},
     title = {Superposition of layers of cubic lattice},
     journal = {Izvestiya. Mathematics },
     pages = {1138--1153},
     publisher = {mathdoc},
     volume = {88},
     number = {6},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a5/}
}
TY  - JOUR
AU  - V. P. Grishukhin
TI  - Superposition of layers of cubic lattice
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 1138
EP  - 1153
VL  - 88
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a5/
LA  - en
ID  - IM2_2024_88_6_a5
ER  - 
%0 Journal Article
%A V. P. Grishukhin
%T Superposition of layers of cubic lattice
%J Izvestiya. Mathematics 
%D 2024
%P 1138-1153
%V 88
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a5/
%G en
%F IM2_2024_88_6_a5
V. P. Grishukhin. Superposition of layers of cubic lattice. Izvestiya. Mathematics , Tome 88 (2024) no. 6, pp. 1138-1153. http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a5/

[1] V. P. Grishukhin, “Layer superposition of the root lattice $A_n$”, Math. Notes, 109:2 (2021), 218–230 | DOI

[2] N. P. Dolbilin, “Properties of faces of parallelohedra”, Proc. Steklov Inst. Math., 266:1 (2009), 105–119 | DOI

[3] B. Delaunay, “Sur la partition régulière de l'espace à 4 dimensions. Première partie”, Bull. Acad. Sciences de l'URSS. VII série, 1929, no. 1, 79–110 | Zbl

[4] B. N. Delone, “Geometry of positive quadratic forms. Part II”, Uspekhi Mat. Nauk, 1938, no. 4, 102–164 (Russian)

[5] E. P. Baranovskiĭ, “Partitioning of Euclidean spaces into $L$-polytopes of some perfect lattices”, Proc. Steklov Inst. Math., 196 (1992), 29–51

[6] G. F. Voronoi, “Nouvelles applications des paramètres continus à là théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs”, J. Reine Angew. Math., 1908:134 (1908), 198–287 ; 1909:136 (1909), 67–182 | DOI | MR | Zbl | DOI | MR | Zbl

[7] S. S. Ryshkov, “A direct geometric description of the $n$-dimensional Voronoi parallelohedra of second type”, Russian Math. Surveys, 54:1 (1999), 264–265 | DOI

[8] S. S. Ryshkov and E. P. Baranovskii, “$C$-types of $n$-dimensional lattices and 5-dimensional primitive parallelohedra (with application to the theory of coverings)”, Proc. Steklov Inst. Math., 137 (1976), 1–140

[9] V. Danilov and V. Grishukhin, “Maximal unimodular systems of vectors”, European J. Combin., 20:6 (1999), 507–526 | DOI | MR | Zbl

[10] V. P. Grishukhin, “Parallelohedra defined by quadratic forms”, Proc. Steklov Inst. Math., 288 (2015), 81–93 | DOI

[11] M. Dutour Sikirić and V. Grishukhun, “Zonotopes and parallelotopes”, Southeast Asian Bull. Math., 41:2 (2017), 197–207 | MR | Zbl

[12] M. Deza and V. P. Grishukhin, “More about the 52 four-dimensional parallelotopes”, Taiwanese J. Math., 12:4 (2008), 901–916 | DOI | MR | Zbl

[13] J. H. Conway, The sensual (quadratic) form, Carus Math. Monogr., 26, Math. Assoc. America, Washington, DC, 1997 | MR | Zbl