Superposition of layers of cubic lattice
Izvestiya. Mathematics , Tome 88 (2024) no. 6, pp. 1138-1153

Voir la notice de l'article provenant de la source Math-Net.Ru

The cube is the Dirichlet–Voronoi cell of the integer lattice $Z^n$. We study the family of $(n+1)$-dimensional lattices $L_Z^{n+1}(h)$ obtained by superposition of layers of the lattice $Z^n$ and depending on the distance $h$ between the layers. The quadratic forms corresponding to these lattices generate a family of forms $f_h$. If $h$ varies from 0 to infinity, the forms $f_h$ pierce the cone of positive quadratic forms from one its boundary to another boundary and pass through a series of edge-forms.
Keywords: cubic lattice, superposition of layers, Dirichlet–Voronoi cells.
@article{IM2_2024_88_6_a5,
     author = {V. P. Grishukhin},
     title = {Superposition of layers of cubic lattice},
     journal = {Izvestiya. Mathematics },
     pages = {1138--1153},
     publisher = {mathdoc},
     volume = {88},
     number = {6},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a5/}
}
TY  - JOUR
AU  - V. P. Grishukhin
TI  - Superposition of layers of cubic lattice
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 1138
EP  - 1153
VL  - 88
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a5/
LA  - en
ID  - IM2_2024_88_6_a5
ER  - 
%0 Journal Article
%A V. P. Grishukhin
%T Superposition of layers of cubic lattice
%J Izvestiya. Mathematics 
%D 2024
%P 1138-1153
%V 88
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a5/
%G en
%F IM2_2024_88_6_a5
V. P. Grishukhin. Superposition of layers of cubic lattice. Izvestiya. Mathematics , Tome 88 (2024) no. 6, pp. 1138-1153. http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a5/