Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2024_88_6_a3, author = {S. D. Glyzin and A. Yu. Kolesov}, title = {Cone criterion on an~infinite-dimensional torus}, journal = {Izvestiya. Mathematics }, pages = {1087--1118}, publisher = {mathdoc}, volume = {88}, number = {6}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a3/} }
S. D. Glyzin; A. Yu. Kolesov. Cone criterion on an~infinite-dimensional torus. Izvestiya. Mathematics , Tome 88 (2024) no. 6, pp. 1087-1118. http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a3/
[1] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | MR | Zbl
[2] D. V. Anosov and V. V. Solodov, “Hyperbolic sets”, Dynamical systems IX, Encyclopaedia Math. Sci., 66, Springer, Berlin, 1995, 10–92 | DOI | MR | Zbl
[3] D. V. Anosov, “Geodesic flows on closed Riemann manifolds with negative curvature”, Proc. Steklov Inst. Math., 90 (1967), 1–235
[4] A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995 | DOI | MR | Zbl
[5] B. Hasselblatt and A. Katok, A first course in dynamics with a panorama of recent developments, Cambridge Univ. Press, New York, 2003 | DOI | MR | Zbl
[6] S. Yu. Pilyugin, Spaces of dynamical systems, De Gruyter Stud. Math. Phys., 3, De Gruyter, Berlin, 2012 | DOI | MR | Zbl
[7] V. Z. Grines and O. V. Pochinka, Introduction to topological classification of diffeomorphisms on two- and three-dimensional manifolds, Regulyarnaya i Khaoticheskaya Dinamika, Moscow–Izhevsk, 2011 (Russian)
[8] V. Grines and E. Zhuzhoma, Surface laminations and chaotic dynamical systems, Izhevsk Institute of Computer Science, Moscow–Izhevsk, 2021
[9] J. Palis, Jr., and W. de Melo, Geometric theory of dynamical systems. An introduction, Transl. from the Portuguese, Springer-Verlag, New York–Berlin, 1982 | DOI | MR | Zbl
[10] Ya. B. Pesin, Lectures on partial hyperbolicity and stable ergodicity, Zur. Lect. Adv. Math., Eur. Math. Soc. (EMS), Zürich, 2004 | DOI | MR | Zbl
[11] C. Robinson, Dynamical systems. Stability, symbolic dynamics, and chaos, Stud. Adv. Math., 2nd corr. ed., CRC Press, Boca Raton, FL, 1999 | DOI | MR | Zbl
[12] J. Palis and F. Takens, Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations. Fractal dimensions and infinitely many attractors, Cambridge Stud. Adv. Math., 35, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl
[13] D. Ruelle, “Large volume limit of the distribution of characteristic exponents in turbulence”, Comm. Math. Phys., 87:2 (1982), 287–302 | DOI | MR | Zbl
[14] R. Mañé, Ergodic theory and differentiable dynamics, Transl. from the Portuguese, Ergeb. Math. Grenzgeb. (3), 8, Springer-Verlag, Berlin, 1987 | DOI | MR | Zbl
[15] P. Thieullen, “Entropy and the Hausdorff dimension for infinite-dimensional dynamical systems”, J. Dynam. Differential Equations, 4:1 (1992), 127–159 | DOI | MR | Zbl
[16] H. M. Hastings, “On expansive homeomorphisms of the infinite torus”, The structure of attractors in dynamical systems (North Dakota State Univ., Fargo, ND 1977), Lecture Notes in Math., 668, Springer-Verlag, Berlin–New York, 1978, 142–149 | DOI | MR | Zbl
[17] R. Mañé, “Expansive homeomorphisms and topological dimension”, Trans. Amer. Math. Soc., 252 (1979), 313–319 | DOI | MR | Zbl
[18] S. D. Glyzin, A. Yu. Kolesov, and N. Kh. Rozov, “Expansive endomorphisms on the infinite-dimensional torus”, Funct. Anal. Appl., 54:4 (2020), 241–256 | DOI
[19] S. D. Glyzin, A. Yu. Kolesov, and N. Kh. Rozov, “Solenoidal attractors of diffeomorphisms of annular sets”, Russian Math. Surveys, 75:2 (2020), 197–252 | DOI
[20] S. D. Glyzin, A. Yu. Kolesov, and N. Kh. Rozov, “On a class of Anosov diffeomorphisms on the infinite-dimensional torus”, Izv. Math., 85:2 (2021), 177–227 | DOI
[21] S. D. Glyzin and A. Yu. Kolesov, “A hyperbolicity criterion for a class of diffeomorphisms of an infinite-dimensional torus”, Sb. Math., 213:2 (2022), 173–215 | DOI
[22] S. D. Glyzin and A. Yu. Kolesov, “Elements of hyperbolic theory on an infinite-dimensional torus”, Russian Math. Surveys, 77:3 (2022), 379–443 | DOI
[23] S. D. Glyzin and A. Yu. Kolesov, “Dynamical systems on an infinite-dimensional torus: foundations of hyperbolic theory”, Tr. Mosk. Mat. Obs., 84, no. 1, MCCME, Moscow, 2023, 55–116 (Russian)
[24] S. D. Glyzin and A. Yu. Kolesov, “On some properties of the shift on an infinite-dimensional torus”, Differ. Equ., 59:7 (2023), 867–879 | DOI
[25] L. A. Bunimovich and Ya. G. Sinai, “Spacetime chaos in coupled map lattices”, Nonlinearity, 1:4 (1988), 491–516 | DOI | MR | Zbl
[26] Ya. B. Pesin and Ya. G. Sinai, “Space-time chaos in the system of weakly interacting hyperbolic systems”, J. Geom. Phys., 5:3 (1988), 483–492 | DOI | MR | Zbl
[27] P. W. Bates, Kening Lu, and Chongchun Zeng, “Persistence of overflowing manifold for semiflow”, Comm. Pure Appl. Math., 52:8 (1999), 983–1046 | 3.0.CO;2-O class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[28] P. W. Bates, Kening Lu, and Chongchun Zeng, “Invariant foliations near normally hyperbolic invariant manifolds for semiflows”, Trans. Amer. Math. Soc., 352:10 (2000), 4641–4676 | DOI | MR | Zbl
[29] A. Mielke and S. V. Zelik, “Infinite-dimensional hyperbolic sets and spatio-temporal chaos in reaction diffusion systems in $\mathbb{R}^n$”, J. Dynam. Differential Equations, 19:2 (2007), 333–389 | DOI | MR | Zbl
[30] S. Zelik and A. Mielke, Multi-pulse evolution and space-time chaos in dissipative systems, Mem. Amer. Math. Soc., 198, no. 925, Amer. Math. Soc., Providence, RI, 2009 | DOI | MR | Zbl
[31] D. Turaev and S. Zelik, “Analytical proof of space-time chaos in Ginzburg–Landau equations”, Discrete Contin. Dyn. Syst., 28:4 (2010), 1713–1751 | DOI | MR | Zbl
[32] S. Newhouse and J. Palis, “Bifurcations of Morse–Smale dynamical systems”, Dynamical systems (Univ. Bahia, Salvador, 1971), Academic Press, Inc., New York–London, 1973, 303–366 | DOI | MR | Zbl
[33] G. Nöbeling, “Verallgemeinerung eines Satzes von Herrn E. Specker”, Invent. Math., 6 (1968), 41–55 | DOI | MR | Zbl
[34] B. Jessen, “The theory of integration in a space of an infinite number of dimensions”, Acta Math., 63:1 (1934), 249–323 | DOI | MR | Zbl
[35] S. S. Platonov, “Certain approximation problems for functions on the infinite-dimensional torus: analogs of the Jackson theorem”, St. Petersburg Math. J., 26:6 (2015), 933–947 | DOI
[36] D. Kosz, “On differentiation of integrals in the infinite-dimensional torus”, Studia Math., 258:1 (2021), 103–119 | DOI | MR | Zbl
[37] V. V. Kozlov, “On the ergodic theory of equations of mathematical physics”, Russ. J. Math. Phys., 28:1 (2021), 73–83 | DOI | MR | Zbl