Cone criterion on an~infinite-dimensional torus
Izvestiya. Mathematics , Tome 88 (2024) no. 6, pp. 1087-1118

Voir la notice de l'article provenant de la source Math-Net.Ru

On the infinite-dimensional torus $\mathbb{T}^{\infty} = E/2\pi\mathbb{Z}^{\infty}$, where $E$ is an infinite-dimensional real Banach space, $\mathbb{Z}^{\infty}$is an abstract integer lattice, a special class of diffeomorphisms $\mathrm{Diff}(\mathbb{T}^{\infty})$ is considered. This class consists of the mappings $G\colon \mathbb{T}^{\infty} \to \mathbb{T}^{\infty}$ such that the differentials $DG$ and $D(G^{-1})$ are uniformly bounded and uniformly continuous on $\mathbb{T}^{\infty}$. For diffeomorphisms from $\mathrm{Diff}(\mathbb{T}^{\infty})$, we establish the validity of the so-called cone criterion, which is a classical result of finite-dimensional hyperbolic theory (that is, the hyperbolicity criterion formulated in terms of fields of invariant horizontal and vertical cones).
Keywords: infinite-dimensional torus, diffeomorphism, hyperbolicity, cone criterion.
@article{IM2_2024_88_6_a3,
     author = {S. D. Glyzin and A. Yu. Kolesov},
     title = {Cone criterion on an~infinite-dimensional torus},
     journal = {Izvestiya. Mathematics },
     pages = {1087--1118},
     publisher = {mathdoc},
     volume = {88},
     number = {6},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a3/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
TI  - Cone criterion on an~infinite-dimensional torus
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 1087
EP  - 1118
VL  - 88
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a3/
LA  - en
ID  - IM2_2024_88_6_a3
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%T Cone criterion on an~infinite-dimensional torus
%J Izvestiya. Mathematics 
%D 2024
%P 1087-1118
%V 88
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a3/
%G en
%F IM2_2024_88_6_a3
S. D. Glyzin; A. Yu. Kolesov. Cone criterion on an~infinite-dimensional torus. Izvestiya. Mathematics , Tome 88 (2024) no. 6, pp. 1087-1118. http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a3/