Uniqueness of solutions of generalized convolution equations on the
Izvestiya. Mathematics , Tome 88 (2024) no. 6, pp. 1050-1086.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the study of the uniqueness problem for convolution equations on groups of motions of homogeneous spaces. The main results relate to the case of the motion group $G=\mathrm{PSL}(2,\mathbb{R})$ of the hyperbolic plane $\mathbb{H}^2$ and are as follows: 1) John type uniqueness theorems for solutions of convolution equations on the group $G$ are proved; 2) exact conditions for the uniqueness of the solution of the system of convolution equations on regions in $G$ are found. To prove these results, a technique based on the study of generalized convolution equations on $\mathbb{H}^2$ is developed. These equations, in turn, are investigated using transmutation operators of a special kind constructed in the work. The proposed method also allows us to establish a number of other results related to generalized convolution equations on $\mathbb{H}^2$ and the group $G$.
Keywords: mean periodicity, hyperbolic plane, John uniqueness theorem, spherical transform, transmutation operators.
@article{IM2_2024_88_6_a2,
     author = {V. V. Volchkov and Vit. V. Volchkov},
     title = {Uniqueness of solutions of generalized convolution equations on the},
     journal = {Izvestiya. Mathematics },
     pages = {1050--1086},
     publisher = {mathdoc},
     volume = {88},
     number = {6},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a2/}
}
TY  - JOUR
AU  - V. V. Volchkov
AU  - Vit. V. Volchkov
TI  - Uniqueness of solutions of generalized convolution equations on the
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 1050
EP  - 1086
VL  - 88
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a2/
LA  - en
ID  - IM2_2024_88_6_a2
ER  - 
%0 Journal Article
%A V. V. Volchkov
%A Vit. V. Volchkov
%T Uniqueness of solutions of generalized convolution equations on the
%J Izvestiya. Mathematics 
%D 2024
%P 1050-1086
%V 88
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a2/
%G en
%F IM2_2024_88_6_a2
V. V. Volchkov; Vit. V. Volchkov. Uniqueness of solutions of generalized convolution equations on the. Izvestiya. Mathematics , Tome 88 (2024) no. 6, pp. 1050-1086. http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a2/

[1] L. Schwartz, “Théorie générale des fonctions moyenne-périodiques”, Ann. of Math. (2), 48:4 (1947), 857–929 | DOI | MR | Zbl

[2] L. Brown, B. M. Schreiber, and B. A. Taylor, “Spectral synthesis and the Pompeiu problem”, Ann. Inst. Fourier (Grenoble), 23:3 (1973), 125–154 | DOI | MR | Zbl

[3] L. Zalcman, “Analyticity and the Pompeiu problem”, Arch. Rational Mech. Anal., 47 (1972), 237–254 | DOI | MR | Zbl

[4] J. D. Smith, “Harmonic analysis of scalar and vector fields in $\mathbb R^n$”, Proc. Cambridge Philos. Soc., 72:3 (1972), 403–416 | DOI | MR | Zbl

[5] D. I. Gurevich, “Counterexamples to a problem of L. Schwartz”, Funct. Anal. Appl., 9:2 (1975), 116–120 | DOI

[6] C. A. Berenstein and R. Gay, “A local version of the two-circles theorem”, Israel J. Math., 55:3 (1986), 267–288 | DOI | MR | Zbl

[7] V. V. Volchkov, “A definitive version of the local two-radii theorem”, Sb. Math., 186:6 (1995), 783–802 | DOI

[8] V. V. Volchkov, “A local two-radii theorem for quasianalytic classes of functions”, Math. Notes, 80:4 (2006), 468–477 | DOI

[9] C. A. Berenstein and M. A. Dostal, “On a property of indicators of smooth convex bodies”, Michigan Math. J., 22:3 (1975), 237–246 | DOI | MR | Zbl

[10] L. Hörmander, The analysis of linear partial differential operators, v. I, Grundlehren Math. Wiss., 256, Distribution theory and Fourier analysis, Springer-Verlag, Berlin, 1983 | DOI | MR | Zbl

[11] V. V. Volchkov and Vit. V. Volchkov, “Convolution equations in many-dimensional domains and on the Heisenberg reduced group”, Sb. Math., 199:8 (2008), 1139–1168 | DOI

[12] V. V. Volchkov and Vit. V. Volchkov, Harmonic analysis of mean periodic functions on symmetric spaces and the Heisenberg group, Springer Monogr. Math., Springer-Verlag London, Ltd., London, 2009 | DOI | MR | Zbl

[13] F. John, “Abhängigkeiten zwischen den Flächenintegralen einer stetigen Funktion”, Math. Ann., 111:1 (1935), 541–559 | DOI | MR | Zbl

[14] F. John, Plane waves and spherical means applied to partial differential equations, Intersci. Publ., New York–London, 1955 | MR | Zbl

[15] V. V. Volchkov, Integral geometry and convolution equations, Kluwer Acad. Publ., Dordrecht, 2003 | DOI | MR | Zbl

[16] Yu. I. Lyubič, “On a class of integral equations”, Amer. Math. Soc. Transl. Ser. 2, 10, Amer. Math. Soc., Providence, RI, 1958, 291–310 | DOI | MR | Zbl

[17] Yu. I. Lyubich, “18.5. Uniqueness theorem for mean-periodic functions”, J. Soviet Math., 26:5 (1984), 2206 | DOI

[18] A. F. Leont'ev, “Properties of sequences of Dirichlet polynomials which are convergent on an interval of the imaginary axis”, Izv. Akad. Nauk SSSR Ser. Mat., 29:2 (1965), 269–328 (Russian) | MR | Zbl

[19] A. F. Leont'ev, Sequences of exponential polynomials, Nauka, Moscow, 1980 (Russian) | MR | Zbl

[20] P. P. Kargaev, “Zeros of mean-periodic functions”, Math. Notes, 37:3 (1985), 181–183 | DOI

[21] D. A. Zaraisky, “A class of mean-periodic functions which are uniquely determined by their restrictions to the ‘period’ ”, Tr. Inst. Prikl. Mat. Mekh., 33 (2019), 38–41 (Russian) | Zbl

[22] D. A. Zaraisky, “Sharpening a uniqueness theorem for solutions of a convolution equation”, Tr. Inst. Prikl. Mat. Mekh., 12 (2006), 69–75 | MR

[23] D. A. Zaraisky, “A uniqueness theorem for functions with zero integrals over balls”, Tr. Inst. Prikl. Mat. Mekh., 25 (2012), 77–83 (Russian) | MR | Zbl

[24] D. A. Zaraisky, “Uniqueness theorem for solutions of convolution equations with radical convolutor”, Proc. IV Int. Sci. Conf. “Donetskie Chteniya 2019: Obrazovanir, Nauka, Innovatsii, Kultura i Vyzovy Sovermennosti”, Vol. 1, v. 1, Fiz.-Matem. i Tekhn. Nauki, DonGU, Donetsk, 2019, 127–128 (Russian)

[25] E. T. Quinto, “Pompeiu transforms on geodesic spheres in real analytic manifolds”, Israel J. Math., 84:3 (1993), 353–363 | DOI | MR | Zbl

[26] V. V. Volchkov, “Uniqueness theorems for solutions of the convolution equation on symmetric spaces”, Izv. Math., 70:6 (2006), 1077–1092 | DOI

[27] V. V. Volchkov and Vit. V. Volchkov, Offbeat integral geometry on symmetric spaces, Birkhäuser/Springer Basel AG, Basel, 2013 | DOI | MR | Zbl

[28] D. A. Zaraisky, “A new uniqueness theorem for one-dimensional convolution equation”, Tr. Inst. Prikl. Mat. Mekh., 34 (2020), 63–67 (Russian) | Zbl

[29] V. V. Volchkov and Vit. V. Volchkov, “Spectral synthesis on the group of conformal automorphisms of the unit disc”, Sb. Math., 209:1 (2018), 1–34 | DOI

[30] S. Helgason, Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions, Pure Appl. Math., 113, Academic Press, Inc., Orlando, FL, 1984 | MR | Zbl

[31] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher transcendental functions, Based, in part, on notes left by H. Bateman, v. 1, 2, McGraw-Hill Book Co., Inc., New York–Toronto–London, 1953 | MR | Zbl

[32] B. Ja. Levin, Distribution of zeros of entire functions, Transl. Math. Monogr., 5, Amer. Math. Soc., Providence, RI, 1964 | MR | Zbl

[33] T. H. Koornwinder, “A new proof of a Paley–Wiener type theorem for the Jacobi transform”, Ark. Math., 13:1-2 (1975), 145–159 | DOI | MR | Zbl

[34] R. Gorenflo and S. Vessella, Abel integral equations. Analysis and applications, Lecture Notes in Math., 1461, Springer-Verlag, Berlin, 1991 | DOI | MR | Zbl

[35] T. H. Koornwinder, “Jacobi functions and analysis on noncompact semisimple Lie groups”, Special functions: group theoretical aspects and applications, Math. Appl., Reidel, Dordrecht, 1984, 1–85 | DOI | MR | Zbl

[36] S. Lang, $\operatorname{S{}L}_2(\mathbf{R})$, Addison-Wesley Publishing Co., Reading, MA–London–Amsterdam, 1975 | MR | Zbl