Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2024_88_6_a2, author = {V. V. Volchkov and Vit. V. Volchkov}, title = {Uniqueness of solutions of generalized convolution equations on the}, journal = {Izvestiya. Mathematics }, pages = {1050--1086}, publisher = {mathdoc}, volume = {88}, number = {6}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a2/} }
TY - JOUR AU - V. V. Volchkov AU - Vit. V. Volchkov TI - Uniqueness of solutions of generalized convolution equations on the JO - Izvestiya. Mathematics PY - 2024 SP - 1050 EP - 1086 VL - 88 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a2/ LA - en ID - IM2_2024_88_6_a2 ER -
V. V. Volchkov; Vit. V. Volchkov. Uniqueness of solutions of generalized convolution equations on the. Izvestiya. Mathematics , Tome 88 (2024) no. 6, pp. 1050-1086. http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a2/
[1] L. Schwartz, “Théorie générale des fonctions moyenne-périodiques”, Ann. of Math. (2), 48:4 (1947), 857–929 | DOI | MR | Zbl
[2] L. Brown, B. M. Schreiber, and B. A. Taylor, “Spectral synthesis and the Pompeiu problem”, Ann. Inst. Fourier (Grenoble), 23:3 (1973), 125–154 | DOI | MR | Zbl
[3] L. Zalcman, “Analyticity and the Pompeiu problem”, Arch. Rational Mech. Anal., 47 (1972), 237–254 | DOI | MR | Zbl
[4] J. D. Smith, “Harmonic analysis of scalar and vector fields in $\mathbb R^n$”, Proc. Cambridge Philos. Soc., 72:3 (1972), 403–416 | DOI | MR | Zbl
[5] D. I. Gurevich, “Counterexamples to a problem of L. Schwartz”, Funct. Anal. Appl., 9:2 (1975), 116–120 | DOI
[6] C. A. Berenstein and R. Gay, “A local version of the two-circles theorem”, Israel J. Math., 55:3 (1986), 267–288 | DOI | MR | Zbl
[7] V. V. Volchkov, “A definitive version of the local two-radii theorem”, Sb. Math., 186:6 (1995), 783–802 | DOI
[8] V. V. Volchkov, “A local two-radii theorem for quasianalytic classes of functions”, Math. Notes, 80:4 (2006), 468–477 | DOI
[9] C. A. Berenstein and M. A. Dostal, “On a property of indicators of smooth convex bodies”, Michigan Math. J., 22:3 (1975), 237–246 | DOI | MR | Zbl
[10] L. Hörmander, The analysis of linear partial differential operators, v. I, Grundlehren Math. Wiss., 256, Distribution theory and Fourier analysis, Springer-Verlag, Berlin, 1983 | DOI | MR | Zbl
[11] V. V. Volchkov and Vit. V. Volchkov, “Convolution equations in many-dimensional domains and on the Heisenberg reduced group”, Sb. Math., 199:8 (2008), 1139–1168 | DOI
[12] V. V. Volchkov and Vit. V. Volchkov, Harmonic analysis of mean periodic functions on symmetric spaces and the Heisenberg group, Springer Monogr. Math., Springer-Verlag London, Ltd., London, 2009 | DOI | MR | Zbl
[13] F. John, “Abhängigkeiten zwischen den Flächenintegralen einer stetigen Funktion”, Math. Ann., 111:1 (1935), 541–559 | DOI | MR | Zbl
[14] F. John, Plane waves and spherical means applied to partial differential equations, Intersci. Publ., New York–London, 1955 | MR | Zbl
[15] V. V. Volchkov, Integral geometry and convolution equations, Kluwer Acad. Publ., Dordrecht, 2003 | DOI | MR | Zbl
[16] Yu. I. Lyubič, “On a class of integral equations”, Amer. Math. Soc. Transl. Ser. 2, 10, Amer. Math. Soc., Providence, RI, 1958, 291–310 | DOI | MR | Zbl
[17] Yu. I. Lyubich, “18.5. Uniqueness theorem for mean-periodic functions”, J. Soviet Math., 26:5 (1984), 2206 | DOI
[18] A. F. Leont'ev, “Properties of sequences of Dirichlet polynomials which are convergent on an interval of the imaginary axis”, Izv. Akad. Nauk SSSR Ser. Mat., 29:2 (1965), 269–328 (Russian) | MR | Zbl
[19] A. F. Leont'ev, Sequences of exponential polynomials, Nauka, Moscow, 1980 (Russian) | MR | Zbl
[20] P. P. Kargaev, “Zeros of mean-periodic functions”, Math. Notes, 37:3 (1985), 181–183 | DOI
[21] D. A. Zaraisky, “A class of mean-periodic functions which are uniquely determined by their restrictions to the ‘period’ ”, Tr. Inst. Prikl. Mat. Mekh., 33 (2019), 38–41 (Russian) | Zbl
[22] D. A. Zaraisky, “Sharpening a uniqueness theorem for solutions of a convolution equation”, Tr. Inst. Prikl. Mat. Mekh., 12 (2006), 69–75 | MR
[23] D. A. Zaraisky, “A uniqueness theorem for functions with zero integrals over balls”, Tr. Inst. Prikl. Mat. Mekh., 25 (2012), 77–83 (Russian) | MR | Zbl
[24] D. A. Zaraisky, “Uniqueness theorem for solutions of convolution equations with radical convolutor”, Proc. IV Int. Sci. Conf. “Donetskie Chteniya 2019: Obrazovanir, Nauka, Innovatsii, Kultura i Vyzovy Sovermennosti”, Vol. 1, v. 1, Fiz.-Matem. i Tekhn. Nauki, DonGU, Donetsk, 2019, 127–128 (Russian)
[25] E. T. Quinto, “Pompeiu transforms on geodesic spheres in real analytic manifolds”, Israel J. Math., 84:3 (1993), 353–363 | DOI | MR | Zbl
[26] V. V. Volchkov, “Uniqueness theorems for solutions of the convolution equation on symmetric spaces”, Izv. Math., 70:6 (2006), 1077–1092 | DOI
[27] V. V. Volchkov and Vit. V. Volchkov, Offbeat integral geometry on symmetric spaces, Birkhäuser/Springer Basel AG, Basel, 2013 | DOI | MR | Zbl
[28] D. A. Zaraisky, “A new uniqueness theorem for one-dimensional convolution equation”, Tr. Inst. Prikl. Mat. Mekh., 34 (2020), 63–67 (Russian) | Zbl
[29] V. V. Volchkov and Vit. V. Volchkov, “Spectral synthesis on the group of conformal automorphisms of the unit disc”, Sb. Math., 209:1 (2018), 1–34 | DOI
[30] S. Helgason, Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions, Pure Appl. Math., 113, Academic Press, Inc., Orlando, FL, 1984 | MR | Zbl
[31] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher transcendental functions, Based, in part, on notes left by H. Bateman, v. 1, 2, McGraw-Hill Book Co., Inc., New York–Toronto–London, 1953 | MR | Zbl
[32] B. Ja. Levin, Distribution of zeros of entire functions, Transl. Math. Monogr., 5, Amer. Math. Soc., Providence, RI, 1964 | MR | Zbl
[33] T. H. Koornwinder, “A new proof of a Paley–Wiener type theorem for the Jacobi transform”, Ark. Math., 13:1-2 (1975), 145–159 | DOI | MR | Zbl
[34] R. Gorenflo and S. Vessella, Abel integral equations. Analysis and applications, Lecture Notes in Math., 1461, Springer-Verlag, Berlin, 1991 | DOI | MR | Zbl
[35] T. H. Koornwinder, “Jacobi functions and analysis on noncompact semisimple Lie groups”, Special functions: group theoretical aspects and applications, Math. Appl., Reidel, Dordrecht, 1984, 1–85 | DOI | MR | Zbl
[36] S. Lang, $\operatorname{S{}L}_2(\mathbf{R})$, Addison-Wesley Publishing Co., Reading, MA–London–Amsterdam, 1975 | MR | Zbl