Chebyshev sets composed of subspaces in asymmetric normed spaces
Izvestiya. Mathematics , Tome 88 (2024) no. 6, pp. 1032-1049

Voir la notice de l'article provenant de la source Math-Net.Ru

By definition, a Chebyshev set is a set of existence and uniqueness, that is, any point has a unique best approximant from this set. We study properties of Chebyshev sets composed of finitely or infinitely many planes (closed affine subspaces, possibly degenerated to points). We show that a finite union of planes is a Chebyshev set if and only if is a Chebyshev plane. Under some conditions on a space or a set, we show that a countable union of planes is never a Chebyshev set (unless this union is a Chebyshev plane itself). As a corollary, we give the following partial answer to the famous Efimov–Stechkin–Klee problem on convexity of Chebyshev sets: in Hilbert spaces (and, more generally, in reflexive (CLUR)-spaces), an at most countable union of planes is a Chebyshev set if and only if this set is a Chebyshev plane. Results of this kind are obtained both in usual normed linear spaces and in spaces with asymmetric norm.
Keywords: Chebyshev set, best approximation, union of subspaces, asymmetric normed space, sun, ridge function.
@article{IM2_2024_88_6_a1,
     author = {A. R. Alimov and I. G. Tsar'kov},
     title = {Chebyshev sets composed of subspaces in asymmetric normed spaces},
     journal = {Izvestiya. Mathematics },
     pages = {1032--1049},
     publisher = {mathdoc},
     volume = {88},
     number = {6},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a1/}
}
TY  - JOUR
AU  - A. R. Alimov
AU  - I. G. Tsar'kov
TI  - Chebyshev sets composed of subspaces in asymmetric normed spaces
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 1032
EP  - 1049
VL  - 88
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a1/
LA  - en
ID  - IM2_2024_88_6_a1
ER  - 
%0 Journal Article
%A A. R. Alimov
%A I. G. Tsar'kov
%T Chebyshev sets composed of subspaces in asymmetric normed spaces
%J Izvestiya. Mathematics 
%D 2024
%P 1032-1049
%V 88
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a1/
%G en
%F IM2_2024_88_6_a1
A. R. Alimov; I. G. Tsar'kov. Chebyshev sets composed of subspaces in asymmetric normed spaces. Izvestiya. Mathematics , Tome 88 (2024) no. 6, pp. 1032-1049. http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a1/