Schauder's fixed point theorem and Pontryagin maximum principle
Izvestiya. Mathematics , Tome 88 (2024) no. 6, pp. 1013-1031

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the Pontryagin maximum principle for a general optimal control problem. The main ingredient of the proof is the abstract lemma on an inverse function, which is proved via the Schauder fixed-point theorem. Under this approach, the proof of the Pontryagin maximum principle is quite short and transparent.
Keywords: the Pontryagin maximum principle, the Schauder fixed-point theorem, inverse function lemma.
@article{IM2_2024_88_6_a0,
     author = {E. R. Avakov and G. G. Magaril-Il'yaev},
     title = {Schauder's fixed point theorem and {Pontryagin} maximum principle},
     journal = {Izvestiya. Mathematics },
     pages = {1013--1031},
     publisher = {mathdoc},
     volume = {88},
     number = {6},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a0/}
}
TY  - JOUR
AU  - E. R. Avakov
AU  - G. G. Magaril-Il'yaev
TI  - Schauder's fixed point theorem and Pontryagin maximum principle
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 1013
EP  - 1031
VL  - 88
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a0/
LA  - en
ID  - IM2_2024_88_6_a0
ER  - 
%0 Journal Article
%A E. R. Avakov
%A G. G. Magaril-Il'yaev
%T Schauder's fixed point theorem and Pontryagin maximum principle
%J Izvestiya. Mathematics 
%D 2024
%P 1013-1031
%V 88
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a0/
%G en
%F IM2_2024_88_6_a0
E. R. Avakov; G. G. Magaril-Il'yaev. Schauder's fixed point theorem and Pontryagin maximum principle. Izvestiya. Mathematics , Tome 88 (2024) no. 6, pp. 1013-1031. http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a0/