Schauder's fixed point theorem and Pontryagin maximum principle
Izvestiya. Mathematics , Tome 88 (2024) no. 6, pp. 1013-1031.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the Pontryagin maximum principle for a general optimal control problem. The main ingredient of the proof is the abstract lemma on an inverse function, which is proved via the Schauder fixed-point theorem. Under this approach, the proof of the Pontryagin maximum principle is quite short and transparent.
Keywords: the Pontryagin maximum principle, the Schauder fixed-point theorem, inverse function lemma.
@article{IM2_2024_88_6_a0,
     author = {E. R. Avakov and G. G. Magaril-Il'yaev},
     title = {Schauder's fixed point theorem and {Pontryagin} maximum principle},
     journal = {Izvestiya. Mathematics },
     pages = {1013--1031},
     publisher = {mathdoc},
     volume = {88},
     number = {6},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a0/}
}
TY  - JOUR
AU  - E. R. Avakov
AU  - G. G. Magaril-Il'yaev
TI  - Schauder's fixed point theorem and Pontryagin maximum principle
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 1013
EP  - 1031
VL  - 88
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a0/
LA  - en
ID  - IM2_2024_88_6_a0
ER  - 
%0 Journal Article
%A E. R. Avakov
%A G. G. Magaril-Il'yaev
%T Schauder's fixed point theorem and Pontryagin maximum principle
%J Izvestiya. Mathematics 
%D 2024
%P 1013-1031
%V 88
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a0/
%G en
%F IM2_2024_88_6_a0
E. R. Avakov; G. G. Magaril-Il'yaev. Schauder's fixed point theorem and Pontryagin maximum principle. Izvestiya. Mathematics , Tome 88 (2024) no. 6, pp. 1013-1031. http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a0/

[1] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The mathematical theory of optimal processes, Intersci. Publ. John Wiley Sons, Inc., New York–London, 1962 | MR | Zbl

[2] R. V. Gamkrelidze, Principles of optimal control theory, Math. Concepts Methods Sci. Eng., 7, Rev. ed., Plenum Press, New York–London, 1978 | DOI | MR | Zbl

[3] E. R. Avakov and G. G. Magaril-Il'yaev, “Local infimum and a family of maximum principles in optimal control”, Sb. Math., 211:6 (2020), 750–785 | DOI

[4] A. A. Milyutin, “General schemes of necessary conditions for extrema and problems of optimal control”, Russian Math. Surveys, 25:5 (1970), 109–115 | DOI

[5] A. D. Ioffe and V. M. Tihomirov, Theory of extremal problems, Stud. Math. Appl., 6, North-Holland Publishing Co., Amsterdam–New York, 1979 | MR | Zbl

[6] E. R. Avakov, G. G. Magaril-Il'yaev, and V. M. Tikhomirov, “Lagrange's principle in extremum problems with constraints”, Russian Math. Surveys, 68:3 (2013), 401–433 | DOI

[7] F. H. Clarke, “A new approach to Lagrange multipliers”, Math. Oper. Res., 1:2 (1976), 165–174 | DOI | MR | Zbl

[8] A. V. Arutyunov, Optimality conditions. Abnormal and degenerate problems, Math. Appl., 526, Kluwer Acad. Publ., Dordrecht, 2000 | DOI | MR | Zbl

[9] A. D. Ioffe, “On necessary conditions for a minimum”, J. Math. Sci. (N.Y.), 217:6 (2016), 751–772 | DOI

[10] E. R. Avakov and G. G. Magaril-Il'yaev, “General implicit function theorem for close mappings”, Proc. Steklov Inst. Math., 315 (2021), 1–12 | DOI

[11] A. Granas and J. Dugundji, Fixed point theory, Springer Monogr. Math., Springer-Verlag, New York, 2003 | DOI | MR | Zbl

[12] G. G. Magaril-Il'yaev and V. M. Tikhomirov, Convex analysis: theory and applications, Transl. Math. Monogr., 222, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl

[13] V. M. Alekseev, V. M. Tikhomirov, and S. V. Fomin, Optimal control, Contemp. Soviet Math., Consultants Bureau, New York, 1987 | DOI | MR | Zbl