Inverse problems for evolutionary quasi-variational hemivariational inequalities with application to mixed boundary value problems
Izvestiya. Mathematics , Tome 88 (2024) no. 5, pp. 988-1011.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this paper is to examine an inverse problem of parameter identification in an evolutionary quasi-variational hemivariational inequality in infinite dimensional reflexive Banach spaces. First, the solvability and compactness of the solution set to the inequality are established by employing a fixed point argument and tools of non-linear analysis. Then, general existence and compactness results for the inverse problem have been proved. Finally, we illustrate the applicability of the results in the study of an identification problem for an initial-boundary value problem of parabolic type with mixed multivalued and non-monotone boundary conditions and a state constraint.
Keywords: inverse problem, evolutionary quasi-variational hemivariational inequality, mixed parabolic boundary value problem.
@article{IM2_2024_88_5_a5,
     author = {Zijia Peng and Guangkun Yang and Zhenhai Liu and S. Mig\'orski},
     title = {Inverse problems for evolutionary quasi-variational hemivariational inequalities with application to mixed boundary value problems},
     journal = {Izvestiya. Mathematics },
     pages = {988--1011},
     publisher = {mathdoc},
     volume = {88},
     number = {5},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_5_a5/}
}
TY  - JOUR
AU  - Zijia Peng
AU  - Guangkun Yang
AU  - Zhenhai Liu
AU  - S. Migórski
TI  - Inverse problems for evolutionary quasi-variational hemivariational inequalities with application to mixed boundary value problems
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 988
EP  - 1011
VL  - 88
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_5_a5/
LA  - en
ID  - IM2_2024_88_5_a5
ER  - 
%0 Journal Article
%A Zijia Peng
%A Guangkun Yang
%A Zhenhai Liu
%A S. Migórski
%T Inverse problems for evolutionary quasi-variational hemivariational inequalities with application to mixed boundary value problems
%J Izvestiya. Mathematics 
%D 2024
%P 988-1011
%V 88
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_5_a5/
%G en
%F IM2_2024_88_5_a5
Zijia Peng; Guangkun Yang; Zhenhai Liu; S. Migórski. Inverse problems for evolutionary quasi-variational hemivariational inequalities with application to mixed boundary value problems. Izvestiya. Mathematics , Tome 88 (2024) no. 5, pp. 988-1011. http://geodesic.mathdoc.fr/item/IM2_2024_88_5_a5/

[1] Y. Achdou, “An inverse problem for a parabolic variational inequality arising in volatility calibration with American options”, SIAM J. Control Optim., 43:5 (2005), 1583–1615 | DOI | MR | Zbl

[2] A. Barbagallo, “Existence of continuous solutions to evolutionary quasi-variational inequalities with applications”, Matematiche (Catania), 62:2 (2007), 11–27 | MR | Zbl

[3] A. Barbagallo, “Regularity results for evolutionary nonlinear variational and quasi-variational inequalities with applications to dynamic equilibrium problems”, J. Global Optim., 40:1-3 (2008), 29–39 | DOI | MR | Zbl

[4] V. Barbu and T. Precupanu, Convexity and optimization in Banach spaces, Springer Monogr. Math., 4th ed., Springer, Dordrecht, 2012 | DOI | MR | Zbl

[5] K. Bartosz, Xiaoliang Cheng, P. Kalita, Yuanjie Yu, and Cong Zeng, “Rothe method for parabolic variational-hemivariational inequalities”, J. Math. Anal. Appl., 423:2 (2015), 841–862 | DOI | MR | Zbl

[6] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, 2011 | DOI | MR | Zbl

[7] F. E. Browder and P. Hess, “Nonlinear mappings of monotone type in Banach spaces”, J. Funct. Anal., 11:3 (1972), 251–294 | DOI | MR | Zbl

[8] S. Carl, Vy Khoi Le, and D. Motreanu, Nonsmooth variational problems and their inequalities. Comparison principles and applications, Springer Monogr. Math., Springer, New York, 2007 | DOI | MR | Zbl

[9] S. Carl, Vy K. Le, and D. Motreanu, “Evolutionary variational-hemivariational inequalities: existence and comparison results”, J. Math. Anal. Appl., 345:1 (2008), 545–558 | DOI | MR | Zbl

[10] Zui-Cha Deng, Liu Yang, Jian-Ning Yu, and Guan-Wei Luo, “An inverse problem of identifying the coefficient in a nonlinear parabolic equation”, Nonlinear Anal., 71:12 (2009), 6212–6221 | DOI | MR | Zbl

[11] Z. Denkowski, S. Migórski, and N. S. Papageorgiou, An introduction to nonlinear analysis: applications, Kluwer Acad. Publ., Boston, MA, 2003 | MR | Zbl

[12] L. Gasiński, S. Migórski, and A. Ochal, “Existence results for evolutionary inclusions and variational-hemivariational inequalities”, Appl. Anal., 94:8 (2015), 1670–1694 | DOI | MR | Zbl

[13] J. Gwinner, “An optimization approach to parameter identification in variational inequalities of second kind”, Optim. Lett., 12:5 (2018), 1141–1154 | DOI | MR | Zbl

[14] Weimin Han and M. Sofonea, Quasistatic contact problems in viscoelasticity and viscoplasticity, AMS/IP Stud. Adv. Math., 30, Amer. Math. Soc., Providence, RI; Int. Press, Somerville, MA, 2002 | DOI | MR | Zbl

[15] A. Hasanov and Zhenhai Liu, “An inverse coefficient problem for a nonlinear parabolic variational inequality”, Appl. Math. Lett., 21:6 (2008), 563–570 | DOI | MR | Zbl

[16] P. Kalita, “Convergence of Rothe scheme for hemivariational inequalities of parabolic type”, Int. J. Numer. Anal. Model., 10:2 (2013), 445–465 | MR | Zbl

[17] A. A. Khan, S. Migórski, and M. Sama, “Inverse problems for multi-valued quasi variational inequalities and noncoercive variational inequalities with noisy data”, Optimization, 68:10 (2019), 1897–1931 | DOI | MR | Zbl

[18] A. A. Khan and D. Motreanu, “Existence theorems for elliptic and evolutionary variational and quasi-variational inequalities”, J. Optim. Theory Appl., 167:3 (2015), 1136–1161 | DOI | MR | Zbl

[19] A. A. Khan and D. Motreanu, “Inverse problems for quasi-variational inequalities”, J. Global Optim., 70:2 (2018), 401–411 | DOI | MR | Zbl

[20] R. Kluge, “On some parameter determination problems and quasi-variational inequalities”, Theory of nonlinear operators, Proc. 5th Internat. Summer School (Central Inst. Math. Mech. Acad. Sci. GDR, Berlin 1977), Abh. Akad. Wiss. DDR, Abt. Math. Naturwiss. Tech., 6, Akademie-Verlag, Berlin, 1978, 129–139 | DOI | MR | Zbl

[21] Xiuwen Li, Zhenhai Liu, and N. S. Papageorgiou, “Solvability and pullback attractor for a class of differential hemivariational inequalities with its applications”, Nonlinearity, 36:2 (2023), 1323–1348 | DOI | MR | Zbl

[22] Yongjian Liu, Zhenhai Liu, and N. S. Papageorgiou, “Sensitivity analysis of optimal control problems driven by dynamic history-dependent variational- hemivariational inequalities”, J. Differential Equations, 342 (2023), 559–595 | DOI | MR | Zbl

[23] Zhenhai Liu, “Generalized quasi-variational hemivariational inequalities”, Appl. Math. Lett., 17:6 (2004), 741–745 | DOI | MR | Zbl

[24] Zhenhai Liu and N. S. Papageorgiou, “Double phase Dirichlet problems with unilateral constraints”, J. Differential Equations, 316:15 (2022), 249–269 | DOI | MR | Zbl

[25] Zhenhai Liu and N. S. Papageorgiou, “Nonautonomous $(p,q)$-equations with unbalanced growth and competing nonlinearities”, J. Math. Pures Appl. (9), 182 (2024), 164–194 | DOI | MR | Zbl

[26] V. Maksimov, “Inverse problems for variational inequalities”, Optimization, optimal control and partial differential equations (Iaşi 1992), Internat. Ser. Numer. Math., 107, Birkhäuser Verlag, Basel, 1992, 275–286 | DOI | MR | Zbl

[27] S. Migórski and S. Dudek, “A new class of variational-hemivariational inequalities for steady Oseen flow with unilateral and frictional type boundary conditions”, ZAMM Z. Angew. Math. Mech., 100:2 (2020), e201900112 | DOI | MR | Zbl

[28] S. Migórski, A. A. Khan, and Shengda Zeng, “Inverse problems for nonlinear quasi-variational inequalities with an application to implicit obstacle problems of $p$-Laplacian type”, Inverse Problems, 35:3 (2019), 035004 | DOI | MR | Zbl

[29] S. Migórski, A. A. Khan, and Shengda Zeng, “Inverse problems for nonlinear quasi-hemivariational inequalities with application to mixed boundary value problems”, Inverse Problems, 36:2 (2020), 024006 | DOI | MR | Zbl

[30] S. Migórski and A. Ochal, “Boundary hemivariational inequality of parabolic type”, Nonlinear Anal., 57:4 (2004), 579–596 | DOI | MR | Zbl

[31] S. Migórski and A. Ochal, “Navier–Stokes problems modeled by evolution hemivariational inequalities”, Discrete Contin. Dyn. Syst., 2007, Dynamical systems and differential equations. Proc. 6th AIMS Internat. Conf., 731–740 | MR | Zbl

[32] S. Migórski and A. Ochal, “An inverse coefficient problem for a parabolic hemivariational inequality”, Appl. Anal., 89:2 (2010), 243–256 | DOI | MR | Zbl

[33] S. Migórski, A. Ochal, and M. Sofonea, Nonlinear inclusions and hemivariational inequalities. Models and analysis of contact problems, Adv. Mech. Math., 26, Springer, New York, 2013 | DOI | MR | Zbl

[34] S. Migórski, Van Thien Nguyen, and Shengda Zeng, “Solvability of parabolic variational-hemivariational inequalities involving space-fractional Laplacian”, Appl. Math. Comput., 364 (2020), 124668 | DOI | MR | Zbl

[35] F. Miranda, J. F. Rodrigues, and L. Santos, “Evolutionary quasi-variational and variational inequalities with constraints on the derivatives”, Adv. Nonlinear Anal., 9:1 (2020), 250–277 | DOI | MR | Zbl

[36] Z. Naniewicz and P. D. Panagiotopoulos, Mathematical theory of hemivariational inequalities and applications, Monogr. Textbooks Pure Appl. Math., 188, Marcel Dekker, Inc., New York, 1995 | MR | Zbl

[37] P. D. Panagiotopoulos, Inequality problems in mechanics and applications. Convex and nonconvex energy functions, Birkhäuser Boston, Inc., Boston, MA, 1985 | DOI | MR | Zbl

[38] Zijia Peng, “Existence of a class of variational inequalities modelling quasi-static viscoelastic contact problems”, ZAMM Z. Angew. Math. Mech., 99:5 (2019), e201800172 | DOI | MR | Zbl

[39] Zijia Peng, “Optimal obstacle control problems involving nonsmooth cost functionals and quasilinear variational inequalities”, SIAM J. Control Optim., 58:4 (2020), 2236–2255 | DOI | MR | Zbl

[40] Zijia Peng and K. Kunisch, “Optimal control of elliptic variational-hemivariational inequalities”, J. Optim. Theory Appl., 178:1 (2018), 1–25 | DOI | MR | Zbl

[41] Zijia Peng and Zhonghui Liu, “Inverse problems for nonlinear quasi-variational hemivariational inequalities with application to obstacle problems of elliptic type”, Commun. Nonlinear Sci. Numer. Simul., 101 (2021), 105889 | DOI | MR | Zbl

[42] Zijia Peng, Cuiming Ma, and Zhonghui Liu, “Existence for a quasistatic variational-hemivariational inequality”, Evol. Equ. Control Theory, 9:4 (2020), 1153–1165 | DOI | MR | Zbl

[43] M. Sofonea and A. Matei, Mathematical models in contact mechanics, London Math. Soc. Lecture Note Ser., 398, Cambridge Univ. Press, Cambridge, 2012 | DOI | Zbl

[44] M. Sofonea and S. Migórski, Variational-hemivariational inequalities with applications, Monogr. Res. Notes Math., CRC Press, Boca Raton, FL, 2018 | DOI | MR | Zbl

[45] Yi-bin Xiao and Nan-jing Huang, “Sub-super-solution method for a class of higher order evolution hemivariational inequalities”, Nonlinear Anal., 71:1-2 (2009), 558–570 | DOI | MR | Zbl

[46] E. Zeidler, Nonlinear functional analysis and its applications, v. II/A, Linear monotone operators, Springer-Verlag, New York, 1990 ; v. II/B, Nonlinear monotone operators | DOI | MR | Zbl | DOI | MR | Zbl

[47] Biao Zeng and S. Migórski, “Variational-hemivariational inverse problems for unilateral frictional contact”, Appl. Anal., 99:2 (2020), 293–312 | DOI | MR | Zbl

[48] Shengda Zeng, D. Motreanu, and A. A. Khan, “Evolutionary quasi-variational-hemivariational inequalities I: Existence and optimal control”, J. Optim. Theory Appl., 193:1-3 (2022), 950–970 | DOI | MR | Zbl