Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2024_88_5_a5, author = {Zijia Peng and Guangkun Yang and Zhenhai Liu and S. Mig\'orski}, title = {Inverse problems for evolutionary quasi-variational hemivariational inequalities with application to mixed boundary value problems}, journal = {Izvestiya. Mathematics }, pages = {988--1011}, publisher = {mathdoc}, volume = {88}, number = {5}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_5_a5/} }
TY - JOUR AU - Zijia Peng AU - Guangkun Yang AU - Zhenhai Liu AU - S. Migórski TI - Inverse problems for evolutionary quasi-variational hemivariational inequalities with application to mixed boundary value problems JO - Izvestiya. Mathematics PY - 2024 SP - 988 EP - 1011 VL - 88 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2024_88_5_a5/ LA - en ID - IM2_2024_88_5_a5 ER -
%0 Journal Article %A Zijia Peng %A Guangkun Yang %A Zhenhai Liu %A S. Migórski %T Inverse problems for evolutionary quasi-variational hemivariational inequalities with application to mixed boundary value problems %J Izvestiya. Mathematics %D 2024 %P 988-1011 %V 88 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2024_88_5_a5/ %G en %F IM2_2024_88_5_a5
Zijia Peng; Guangkun Yang; Zhenhai Liu; S. Migórski. Inverse problems for evolutionary quasi-variational hemivariational inequalities with application to mixed boundary value problems. Izvestiya. Mathematics , Tome 88 (2024) no. 5, pp. 988-1011. http://geodesic.mathdoc.fr/item/IM2_2024_88_5_a5/
[1] Y. Achdou, “An inverse problem for a parabolic variational inequality arising in volatility calibration with American options”, SIAM J. Control Optim., 43:5 (2005), 1583–1615 | DOI | MR | Zbl
[2] A. Barbagallo, “Existence of continuous solutions to evolutionary quasi-variational inequalities with applications”, Matematiche (Catania), 62:2 (2007), 11–27 | MR | Zbl
[3] A. Barbagallo, “Regularity results for evolutionary nonlinear variational and quasi-variational inequalities with applications to dynamic equilibrium problems”, J. Global Optim., 40:1-3 (2008), 29–39 | DOI | MR | Zbl
[4] V. Barbu and T. Precupanu, Convexity and optimization in Banach spaces, Springer Monogr. Math., 4th ed., Springer, Dordrecht, 2012 | DOI | MR | Zbl
[5] K. Bartosz, Xiaoliang Cheng, P. Kalita, Yuanjie Yu, and Cong Zeng, “Rothe method for parabolic variational-hemivariational inequalities”, J. Math. Anal. Appl., 423:2 (2015), 841–862 | DOI | MR | Zbl
[6] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, 2011 | DOI | MR | Zbl
[7] F. E. Browder and P. Hess, “Nonlinear mappings of monotone type in Banach spaces”, J. Funct. Anal., 11:3 (1972), 251–294 | DOI | MR | Zbl
[8] S. Carl, Vy Khoi Le, and D. Motreanu, Nonsmooth variational problems and their inequalities. Comparison principles and applications, Springer Monogr. Math., Springer, New York, 2007 | DOI | MR | Zbl
[9] S. Carl, Vy K. Le, and D. Motreanu, “Evolutionary variational-hemivariational inequalities: existence and comparison results”, J. Math. Anal. Appl., 345:1 (2008), 545–558 | DOI | MR | Zbl
[10] Zui-Cha Deng, Liu Yang, Jian-Ning Yu, and Guan-Wei Luo, “An inverse problem of identifying the coefficient in a nonlinear parabolic equation”, Nonlinear Anal., 71:12 (2009), 6212–6221 | DOI | MR | Zbl
[11] Z. Denkowski, S. Migórski, and N. S. Papageorgiou, An introduction to nonlinear analysis: applications, Kluwer Acad. Publ., Boston, MA, 2003 | MR | Zbl
[12] L. Gasiński, S. Migórski, and A. Ochal, “Existence results for evolutionary inclusions and variational-hemivariational inequalities”, Appl. Anal., 94:8 (2015), 1670–1694 | DOI | MR | Zbl
[13] J. Gwinner, “An optimization approach to parameter identification in variational inequalities of second kind”, Optim. Lett., 12:5 (2018), 1141–1154 | DOI | MR | Zbl
[14] Weimin Han and M. Sofonea, Quasistatic contact problems in viscoelasticity and viscoplasticity, AMS/IP Stud. Adv. Math., 30, Amer. Math. Soc., Providence, RI; Int. Press, Somerville, MA, 2002 | DOI | MR | Zbl
[15] A. Hasanov and Zhenhai Liu, “An inverse coefficient problem for a nonlinear parabolic variational inequality”, Appl. Math. Lett., 21:6 (2008), 563–570 | DOI | MR | Zbl
[16] P. Kalita, “Convergence of Rothe scheme for hemivariational inequalities of parabolic type”, Int. J. Numer. Anal. Model., 10:2 (2013), 445–465 | MR | Zbl
[17] A. A. Khan, S. Migórski, and M. Sama, “Inverse problems for multi-valued quasi variational inequalities and noncoercive variational inequalities with noisy data”, Optimization, 68:10 (2019), 1897–1931 | DOI | MR | Zbl
[18] A. A. Khan and D. Motreanu, “Existence theorems for elliptic and evolutionary variational and quasi-variational inequalities”, J. Optim. Theory Appl., 167:3 (2015), 1136–1161 | DOI | MR | Zbl
[19] A. A. Khan and D. Motreanu, “Inverse problems for quasi-variational inequalities”, J. Global Optim., 70:2 (2018), 401–411 | DOI | MR | Zbl
[20] R. Kluge, “On some parameter determination problems and quasi-variational inequalities”, Theory of nonlinear operators, Proc. 5th Internat. Summer School (Central Inst. Math. Mech. Acad. Sci. GDR, Berlin 1977), Abh. Akad. Wiss. DDR, Abt. Math. Naturwiss. Tech., 6, Akademie-Verlag, Berlin, 1978, 129–139 | DOI | MR | Zbl
[21] Xiuwen Li, Zhenhai Liu, and N. S. Papageorgiou, “Solvability and pullback attractor for a class of differential hemivariational inequalities with its applications”, Nonlinearity, 36:2 (2023), 1323–1348 | DOI | MR | Zbl
[22] Yongjian Liu, Zhenhai Liu, and N. S. Papageorgiou, “Sensitivity analysis of optimal control problems driven by dynamic history-dependent variational- hemivariational inequalities”, J. Differential Equations, 342 (2023), 559–595 | DOI | MR | Zbl
[23] Zhenhai Liu, “Generalized quasi-variational hemivariational inequalities”, Appl. Math. Lett., 17:6 (2004), 741–745 | DOI | MR | Zbl
[24] Zhenhai Liu and N. S. Papageorgiou, “Double phase Dirichlet problems with unilateral constraints”, J. Differential Equations, 316:15 (2022), 249–269 | DOI | MR | Zbl
[25] Zhenhai Liu and N. S. Papageorgiou, “Nonautonomous $(p,q)$-equations with unbalanced growth and competing nonlinearities”, J. Math. Pures Appl. (9), 182 (2024), 164–194 | DOI | MR | Zbl
[26] V. Maksimov, “Inverse problems for variational inequalities”, Optimization, optimal control and partial differential equations (Iaşi 1992), Internat. Ser. Numer. Math., 107, Birkhäuser Verlag, Basel, 1992, 275–286 | DOI | MR | Zbl
[27] S. Migórski and S. Dudek, “A new class of variational-hemivariational inequalities for steady Oseen flow with unilateral and frictional type boundary conditions”, ZAMM Z. Angew. Math. Mech., 100:2 (2020), e201900112 | DOI | MR | Zbl
[28] S. Migórski, A. A. Khan, and Shengda Zeng, “Inverse problems for nonlinear quasi-variational inequalities with an application to implicit obstacle problems of $p$-Laplacian type”, Inverse Problems, 35:3 (2019), 035004 | DOI | MR | Zbl
[29] S. Migórski, A. A. Khan, and Shengda Zeng, “Inverse problems for nonlinear quasi-hemivariational inequalities with application to mixed boundary value problems”, Inverse Problems, 36:2 (2020), 024006 | DOI | MR | Zbl
[30] S. Migórski and A. Ochal, “Boundary hemivariational inequality of parabolic type”, Nonlinear Anal., 57:4 (2004), 579–596 | DOI | MR | Zbl
[31] S. Migórski and A. Ochal, “Navier–Stokes problems modeled by evolution hemivariational inequalities”, Discrete Contin. Dyn. Syst., 2007, Dynamical systems and differential equations. Proc. 6th AIMS Internat. Conf., 731–740 | MR | Zbl
[32] S. Migórski and A. Ochal, “An inverse coefficient problem for a parabolic hemivariational inequality”, Appl. Anal., 89:2 (2010), 243–256 | DOI | MR | Zbl
[33] S. Migórski, A. Ochal, and M. Sofonea, Nonlinear inclusions and hemivariational inequalities. Models and analysis of contact problems, Adv. Mech. Math., 26, Springer, New York, 2013 | DOI | MR | Zbl
[34] S. Migórski, Van Thien Nguyen, and Shengda Zeng, “Solvability of parabolic variational-hemivariational inequalities involving space-fractional Laplacian”, Appl. Math. Comput., 364 (2020), 124668 | DOI | MR | Zbl
[35] F. Miranda, J. F. Rodrigues, and L. Santos, “Evolutionary quasi-variational and variational inequalities with constraints on the derivatives”, Adv. Nonlinear Anal., 9:1 (2020), 250–277 | DOI | MR | Zbl
[36] Z. Naniewicz and P. D. Panagiotopoulos, Mathematical theory of hemivariational inequalities and applications, Monogr. Textbooks Pure Appl. Math., 188, Marcel Dekker, Inc., New York, 1995 | MR | Zbl
[37] P. D. Panagiotopoulos, Inequality problems in mechanics and applications. Convex and nonconvex energy functions, Birkhäuser Boston, Inc., Boston, MA, 1985 | DOI | MR | Zbl
[38] Zijia Peng, “Existence of a class of variational inequalities modelling quasi-static viscoelastic contact problems”, ZAMM Z. Angew. Math. Mech., 99:5 (2019), e201800172 | DOI | MR | Zbl
[39] Zijia Peng, “Optimal obstacle control problems involving nonsmooth cost functionals and quasilinear variational inequalities”, SIAM J. Control Optim., 58:4 (2020), 2236–2255 | DOI | MR | Zbl
[40] Zijia Peng and K. Kunisch, “Optimal control of elliptic variational-hemivariational inequalities”, J. Optim. Theory Appl., 178:1 (2018), 1–25 | DOI | MR | Zbl
[41] Zijia Peng and Zhonghui Liu, “Inverse problems for nonlinear quasi-variational hemivariational inequalities with application to obstacle problems of elliptic type”, Commun. Nonlinear Sci. Numer. Simul., 101 (2021), 105889 | DOI | MR | Zbl
[42] Zijia Peng, Cuiming Ma, and Zhonghui Liu, “Existence for a quasistatic variational-hemivariational inequality”, Evol. Equ. Control Theory, 9:4 (2020), 1153–1165 | DOI | MR | Zbl
[43] M. Sofonea and A. Matei, Mathematical models in contact mechanics, London Math. Soc. Lecture Note Ser., 398, Cambridge Univ. Press, Cambridge, 2012 | DOI | Zbl
[44] M. Sofonea and S. Migórski, Variational-hemivariational inequalities with applications, Monogr. Res. Notes Math., CRC Press, Boca Raton, FL, 2018 | DOI | MR | Zbl
[45] Yi-bin Xiao and Nan-jing Huang, “Sub-super-solution method for a class of higher order evolution hemivariational inequalities”, Nonlinear Anal., 71:1-2 (2009), 558–570 | DOI | MR | Zbl
[46] E. Zeidler, Nonlinear functional analysis and its applications, v. II/A, Linear monotone operators, Springer-Verlag, New York, 1990 ; v. II/B, Nonlinear monotone operators | DOI | MR | Zbl | DOI | MR | Zbl
[47] Biao Zeng and S. Migórski, “Variational-hemivariational inverse problems for unilateral frictional contact”, Appl. Anal., 99:2 (2020), 293–312 | DOI | MR | Zbl
[48] Shengda Zeng, D. Motreanu, and A. A. Khan, “Evolutionary quasi-variational-hemivariational inequalities I: Existence and optimal control”, J. Optim. Theory Appl., 193:1-3 (2022), 950–970 | DOI | MR | Zbl