Mots-clés : Pfister form, Colliot–Thélène conjecture
@article{IM2_2024_88_5_a4,
author = {I. A. Panin and D. N. Tyurin},
title = {Pfister forms and a~conjecture {due~to~Colliot{\textendash}Th\'el\`ene} in the mixed characteristic case},
journal = {Izvestiya. Mathematics},
pages = {977--987},
year = {2024},
volume = {88},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_5_a4/}
}
I. A. Panin; D. N. Tyurin. Pfister forms and a conjecture due to Colliot–Thélène in the mixed characteristic case. Izvestiya. Mathematics, Tome 88 (2024) no. 5, pp. 977-987. http://geodesic.mathdoc.fr/item/IM2_2024_88_5_a4/
[1] K. Česnavičius, “Grothendieck–Serre in the quasi-split unramified case”, Forum Math. Pi, 10 (2022), e9 | DOI | MR | Zbl
[2] J.-L. Colliot-Thélène, “Formes quadratiques sur les anneaux semi-locaux réguliers”, Colloque sur les formes quadratiques, 2 (Montpellier 1977), Bull. Soc. Math. France Mém., 59, 1979, 13–31 | MR | Zbl
[3] M. Ojanguren, I. Panin, “Rationally trivial hermitian spaces are locally trivial”, Math. Z., 237:1 (2001), 181–198 | DOI | MR | Zbl
[4] I. Panin, “Rationally isotropic quadratic spaces are locally isotropic”, Invent. Math., 176:2 (2009), 397–403 | DOI | MR | Zbl
[5] I. Panin, Moving lemmas in mixed characteristic and applications, arXiv: 2202.00896v1
[6] I. Panin, On Grothendieck–Serre conjecture in mixed characteristic for $SL_{1,D}$, arXiv: 2202.05493v1
[7] I. Panin, K. Pimenov, “Rationally isotropic quadratic spaces are locally isotropic. II”, Doc. Math., 2010, Extra vol.: A. A. Suslin's 60th birthday, 515–523 | DOI | MR | Zbl
[8] I. Panin and K. Pimenov, “Rationally isotropic quadratic spaces are locally isotropic. III”, St. Petersburg Math. J., 27:6 (2016), 1029–1034 | DOI
[9] S. Scully, “The Artin–Springer theorem for quadratic forms over semi-local rings with finite residue fields”, Proc. Amer. Math. Soc., 146:1 (2018), 1–13 | DOI | MR | Zbl