Pfister forms and a~conjecture due~to~Colliot--Th\'{e}l\`{e}ne in the mixed characteristic case
Izvestiya. Mathematics , Tome 88 (2024) no. 5, pp. 977-987.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a regular local ring of mixed characteristic $(0,p)$, where $p\neq 2$ is a prime number. Suppose that the quotient ring $R/pR$ is also regular. We fix a non-degenerate Pfister form $Q(T_{1},\ldots,T_{2^{m}})$ over $R$ and an invertible element $c$ in $R$. Then the equation $Q(T_{1},\ldots,T_{2^{m}})=c$ has a solution over $R$ if and only if it has a solution over the fraction field $K$.
Keywords: quadratic form, Colliot–Thélène conjecture, mixed characteristic.
Mots-clés : Pfister form
@article{IM2_2024_88_5_a4,
     author = {I. A. Panin and D. N. Tyurin},
     title = {Pfister forms and a~conjecture {due~to~Colliot--Th\'{e}l\`{e}ne} in the mixed characteristic case},
     journal = {Izvestiya. Mathematics },
     pages = {977--987},
     publisher = {mathdoc},
     volume = {88},
     number = {5},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_5_a4/}
}
TY  - JOUR
AU  - I. A. Panin
AU  - D. N. Tyurin
TI  - Pfister forms and a~conjecture due~to~Colliot--Th\'{e}l\`{e}ne in the mixed characteristic case
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 977
EP  - 987
VL  - 88
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_5_a4/
LA  - en
ID  - IM2_2024_88_5_a4
ER  - 
%0 Journal Article
%A I. A. Panin
%A D. N. Tyurin
%T Pfister forms and a~conjecture due~to~Colliot--Th\'{e}l\`{e}ne in the mixed characteristic case
%J Izvestiya. Mathematics 
%D 2024
%P 977-987
%V 88
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_5_a4/
%G en
%F IM2_2024_88_5_a4
I. A. Panin; D. N. Tyurin. Pfister forms and a~conjecture due~to~Colliot--Th\'{e}l\`{e}ne in the mixed characteristic case. Izvestiya. Mathematics , Tome 88 (2024) no. 5, pp. 977-987. http://geodesic.mathdoc.fr/item/IM2_2024_88_5_a4/

[1] K. Česnavičius, “Grothendieck–Serre in the quasi-split unramified case”, Forum Math. Pi, 10 (2022), e9 | DOI | MR | Zbl

[2] J.-L. Colliot-Thélène, “Formes quadratiques sur les anneaux semi-locaux réguliers”, Colloque sur les formes quadratiques, 2 (Montpellier 1977), Bull. Soc. Math. France Mém., 59, 1979, 13–31 | MR | Zbl

[3] M. Ojanguren, I. Panin, “Rationally trivial hermitian spaces are locally trivial”, Math. Z., 237:1 (2001), 181–198 | DOI | MR | Zbl

[4] I. Panin, “Rationally isotropic quadratic spaces are locally isotropic”, Invent. Math., 176:2 (2009), 397–403 | DOI | MR | Zbl

[5] I. Panin, Moving lemmas in mixed characteristic and applications, arXiv: 2202.00896v1

[6] I. Panin, On Grothendieck–Serre conjecture in mixed characteristic for $SL_{1,D}$, arXiv: 2202.05493v1

[7] I. Panin, K. Pimenov, “Rationally isotropic quadratic spaces are locally isotropic. II”, Doc. Math., 2010, Extra vol.: A. A. Suslin's 60th birthday, 515–523 | DOI | MR | Zbl

[8] I. Panin and K. Pimenov, “Rationally isotropic quadratic spaces are locally isotropic. III”, St. Petersburg Math. J., 27:6 (2016), 1029–1034 | DOI

[9] S. Scully, “The Artin–Springer theorem for quadratic forms over semi-local rings with finite residue fields”, Proc. Amer. Math. Soc., 146:1 (2018), 1–13 | DOI | MR | Zbl