Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2024_88_5_a4, author = {I. A. Panin and D. N. Tyurin}, title = {Pfister forms and a~conjecture {due~to~Colliot--Th\'{e}l\`{e}ne} in the mixed characteristic case}, journal = {Izvestiya. Mathematics }, pages = {977--987}, publisher = {mathdoc}, volume = {88}, number = {5}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_5_a4/} }
TY - JOUR AU - I. A. Panin AU - D. N. Tyurin TI - Pfister forms and a~conjecture due~to~Colliot--Th\'{e}l\`{e}ne in the mixed characteristic case JO - Izvestiya. Mathematics PY - 2024 SP - 977 EP - 987 VL - 88 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2024_88_5_a4/ LA - en ID - IM2_2024_88_5_a4 ER -
I. A. Panin; D. N. Tyurin. Pfister forms and a~conjecture due~to~Colliot--Th\'{e}l\`{e}ne in the mixed characteristic case. Izvestiya. Mathematics , Tome 88 (2024) no. 5, pp. 977-987. http://geodesic.mathdoc.fr/item/IM2_2024_88_5_a4/
[1] K. Česnavičius, “Grothendieck–Serre in the quasi-split unramified case”, Forum Math. Pi, 10 (2022), e9 | DOI | MR | Zbl
[2] J.-L. Colliot-Thélène, “Formes quadratiques sur les anneaux semi-locaux réguliers”, Colloque sur les formes quadratiques, 2 (Montpellier 1977), Bull. Soc. Math. France Mém., 59, 1979, 13–31 | MR | Zbl
[3] M. Ojanguren, I. Panin, “Rationally trivial hermitian spaces are locally trivial”, Math. Z., 237:1 (2001), 181–198 | DOI | MR | Zbl
[4] I. Panin, “Rationally isotropic quadratic spaces are locally isotropic”, Invent. Math., 176:2 (2009), 397–403 | DOI | MR | Zbl
[5] I. Panin, Moving lemmas in mixed characteristic and applications, arXiv: 2202.00896v1
[6] I. Panin, On Grothendieck–Serre conjecture in mixed characteristic for $SL_{1,D}$, arXiv: 2202.05493v1
[7] I. Panin, K. Pimenov, “Rationally isotropic quadratic spaces are locally isotropic. II”, Doc. Math., 2010, Extra vol.: A. A. Suslin's 60th birthday, 515–523 | DOI | MR | Zbl
[8] I. Panin and K. Pimenov, “Rationally isotropic quadratic spaces are locally isotropic. III”, St. Petersburg Math. J., 27:6 (2016), 1029–1034 | DOI
[9] S. Scully, “The Artin–Springer theorem for quadratic forms over semi-local rings with finite residue fields”, Proc. Amer. Math. Soc., 146:1 (2018), 1–13 | DOI | MR | Zbl