Local analog of the Deligne--Riemann--Roch isomorphism for line bundles in relative dimension~1
Izvestiya. Mathematics , Tome 88 (2024) no. 5, pp. 930-976.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a local analog of the Deligne–Riemann–Roch isomorphism in the case of line bundles and relative dimension $1$. This local analog consists in computation of the class of $12$th power of the determinant central extension of a group ind-scheme $\mathcal G$ by the multiplicative group scheme over $\mathbb Q$ via the product of $2$-cocyles in the second cohomology group. These $2$-cocycles are the compositions of the Contou-Carrère symbol with the $\cup$-product of $1$-cocycles. The group ind-scheme $\mathcal{G}$ represents the functor which assigns to every commutative ring $A$ the group that is the semidirect product of the group $A((t))^*$ of invertible elements of $A((t))$ and the group of continuous $A$-automorphisms of $A$-algebra $A((t))$. The determinant central extension naturally acts on the determinant line bundle on the moduli stack of geometric data (proper quintets). A proper quintet is a collection of a proper family of curves over $\operatorname{Spec} A$, a line bundle on this family, a section of this family, a relative formal parameter at the section, a formal trivialization of the bundle at the section that satisfy further conditions.
Keywords: determinant central extension, $\cup$-products of $1$-cocycles, determinant linear bundle.
Mots-clés : Deligne–Riemann–Roch isomorphism, Contou-Carrère symbol
@article{IM2_2024_88_5_a3,
     author = {D. V. Osipov},
     title = {Local analog of the {Deligne--Riemann--Roch} isomorphism for line bundles in relative dimension~1},
     journal = {Izvestiya. Mathematics },
     pages = {930--976},
     publisher = {mathdoc},
     volume = {88},
     number = {5},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_5_a3/}
}
TY  - JOUR
AU  - D. V. Osipov
TI  - Local analog of the Deligne--Riemann--Roch isomorphism for line bundles in relative dimension~1
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 930
EP  - 976
VL  - 88
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_5_a3/
LA  - en
ID  - IM2_2024_88_5_a3
ER  - 
%0 Journal Article
%A D. V. Osipov
%T Local analog of the Deligne--Riemann--Roch isomorphism for line bundles in relative dimension~1
%J Izvestiya. Mathematics 
%D 2024
%P 930-976
%V 88
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_5_a3/
%G en
%F IM2_2024_88_5_a3
D. V. Osipov. Local analog of the Deligne--Riemann--Roch isomorphism for line bundles in relative dimension~1. Izvestiya. Mathematics , Tome 88 (2024) no. 5, pp. 930-976. http://geodesic.mathdoc.fr/item/IM2_2024_88_5_a3/

[1] E. Arbarello, M. Cornalba, and Ph. A. Griffiths, Geometry of algebraic curves, With a contribution by J. D. Harris, v. II, Grundlehren Math. Wiss., 268, Springer, Heidelberg, 2011 | DOI | MR | Zbl

[2] E. Arbarello, C. de Concini, V. G. Kac, and C. Procesi, “Moduli spaces of curves and representation theory”, Comm. Math. Phys., 117:1 (1988), 1–36 | DOI | MR | Zbl

[3] S. Boucksom and D. Eriksson, “Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry”, Adv. Math., 378 (2021), 107501 | DOI | MR | Zbl

[4] K. S. Brown, Cohomology of groups, Graduate Texts in Math., 87, Springer-Verlag, New York–Berlin, 1982 | DOI | MR | Zbl

[5] J.-L. Brylinski and P. Deligne, “Central extensions of reductive groups by $K_2$”, Publ. Math. Inst. Hautes Études Sci., 94 (2001), 5–85 | DOI | MR | Zbl

[6] C. Contou-Carrère, “Jacobienne locale, groupe de bivecteurs de Witt universel, et symbole modéré”, C. R. Acad. Sci. Paris Sér. I Math., 318:8 (1994), 743–746 | MR | Zbl

[7] C. Contou-Carrère, “Jacobienne locale d'une courbe formelle relative”, Rend. Semin. Mat. Univ. Padova, 130 (2013), 1–106 | DOI | MR | Zbl

[8] P. Deligne, “Le déterminant de la cohomologie”, Current trends in arithmetical algebraic geometry (Arcata, CA 1985), Contemp. Math., 67, Amer. Math. Soc., Providence, RI, 1987, 93–177 | DOI | MR | Zbl

[9] P. Deligne, “Le symbole modéré”, Publ. Math. Inst. Hautes Études Sci., 73 (1991), 147–181 | DOI | MR | Zbl

[10] J. Dieudonné, Introduction to the theory of formal groups, Pure Appl. Math., 20, Marcel Dekker, Inc., New York, 1973 | MR | Zbl

[11] E. Frenkel and D. Ben-Zvi, Vertex algebras and algebraic curves, Math. Surveys Monogr., 88, 2nd ed., Amer. Math. Soc., Providence, RI, 2004 | DOI | MR | Zbl

[12] S. O. Gorchinskiy and D. V. Osipov, “Higher-dimensional Contou-Carrère symbol and continuous automorphisms”, Funct. Anal. Appl., 50:4 (2016), 268–280 | DOI

[13] A. Grothendieck, “Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III”, Publ. Math. Inst. Hautes Études Sci., 28 (1966), 1–255 | DOI | MR | Zbl

[14] A. Grothendieck, “Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. IV”, Publ. Math. Inst. Hautes Études Sci., 32 (1967), 1–361 | MR | Zbl

[15] V. G. Kac and D. H. Peterson, “Spin and wedge representations of infinite-dimensional Lie algebras and groups”, Proc. Natl. Acad. Sci. USA, 78:6 (1981), 3308–3312 | DOI | MR | Zbl

[16] R. Kiehl, “Ein “Descente”-Lemma und Grothendiecks Projektionssatz für nichtnoethersche Schemata”, Math. Ann., 198 (1972), 287–316 | DOI | MR | Zbl

[17] J. Milnor, Introduction to algebraic $K$-theory, Ann. of Math. Stud., 72, Princeton Univ. Press, Princeton, NJ; Univ. of Tokyo Press, Tokyo, 1971 | DOI | MR | Zbl

[18] D. V. Osipov, “The Krichever correspondence for algebraic varieties”, Izv. Math., 65:5 (2001), 941–975 | DOI

[19] D. V. Osipov, “Formal Bott–Thurston cocycle and part of a formal Riemann–Roch theorem”, Proc. Steklov Inst. Math., 320 (2023), 226–257 ; arXiv: 2211.15932 | DOI

[20] D. V. Osipov, “Determinant central extension and $\cup$-products of 1-cocycles”, Russian Math. Surveys, 78:4 (2023), 791–793 | DOI

[21] D. Osipov and Xinwen Zhu, “The two-dimensional Contou-Carrère symbol and reciprocity laws”, J. Algebraic Geom., 25:4 (2016), 703–774 | DOI | MR | Zbl

[22] A. Polishchuk, Extended clutching construction for the moduli of stable curves, arXiv: 2110.04682

[23] A. Pressley and G. Segal, Loop groups, Oxford Math. Monogr., 2nd rev. ed., Oxford Univ. Press, New York, 1988 | Zbl

[24] M. Romagny, “Group actions on stacks and applications”, Michigan Math. J., 53:1 (2005), 209–236 | DOI | MR | Zbl

[25] Schémas en groupes, Séminaire de géométrie algébrique du Bois Marie 1962/64 (SGA 3), v. I, Lecture Notes in Math., 151, Prorpiétés générales des schémas en groupes, eds. M. Demazure and A. Grothendieck, Springer-Verlag, Berlin–New York, 1970 | DOI | MR | Zbl

[26] G. Segal, “Unitary representations of some infinite-dimensional groups”, Comm. Math. Phys., 80:3 (1981), 301–342 | DOI | MR | Zbl

[27] G. Segal and G. Wilson, “Loop groups and equations of KdV type”, Publ. Math. Inst. Hautes Études Sci., 61 (1985), 5–65 | DOI | MR | Zbl

[28] J.-P. Serre, Lie algebras and Lie groups, 1964 lectures given at Harvard Univ., Lecture Notes in Math., 1500, Corr. 5th print. of the 2nd (1992) ed., Springer-Verlag, Berlin, 2006 | DOI | MR | Zbl

[29] The Stacks project http://stacks.math.columbia.edu

[30] Théorie des intersections et théorème de Riemann–Roch, Séminaire de Géométrie Algébrique du Bois Marie 1966/67 (SGA 6), Lecture Notes in Math., 225, eds. P. Berthelot, A. Grothendieck, and L. Illusie, Springer-Verlag, Berlin–New York, 1971 | DOI | MR | Zbl

[31] Théorie des topos et cohomologie étale des schémas, Séminaire de géométrie algébrique du Bois Marie 1963/64 (SGA 4), v. 1, Lecture Notes in Math., 269, Théorie des topos, eds. M. Artin, A. Grothendieck, and J. L. Verdier, Springer-Verlag, Berlin–New York, 1972 | DOI | MR | Zbl