Finite abelian subgroups in the groups of birational and bimeromorphic selfmaps
Izvestiya. Mathematics , Tome 88 (2024) no. 5, pp. 856-872

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a complex projective variety. Suppose that the group of birational automorphisms of $X$ contains finite subgroups isomorphic to $(\mathbb{Z}/N\mathbb{Z})^r$ for $r$ fixed and $N$ arbitrarily large. We show that $r$ does not exceed $2\dim(X)$. Moreover, the equality holds if and only if $X$ is birational to an abelian variety. We also show that an analogous result holds for groups of bimeromorphic automorphisms of compact Kähler spaces under some additional assumptions.
Keywords: compact Kähler space, finite abelian group.
Mots-clés : birational map, bimeromorphic map
@article{IM2_2024_88_5_a1,
     author = {A. S. Golota},
     title = {Finite abelian subgroups in the groups of birational and bimeromorphic selfmaps},
     journal = {Izvestiya. Mathematics },
     pages = {856--872},
     publisher = {mathdoc},
     volume = {88},
     number = {5},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_5_a1/}
}
TY  - JOUR
AU  - A. S. Golota
TI  - Finite abelian subgroups in the groups of birational and bimeromorphic selfmaps
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 856
EP  - 872
VL  - 88
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_5_a1/
LA  - en
ID  - IM2_2024_88_5_a1
ER  - 
%0 Journal Article
%A A. S. Golota
%T Finite abelian subgroups in the groups of birational and bimeromorphic selfmaps
%J Izvestiya. Mathematics 
%D 2024
%P 856-872
%V 88
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_5_a1/
%G en
%F IM2_2024_88_5_a1
A. S. Golota. Finite abelian subgroups in the groups of birational and bimeromorphic selfmaps. Izvestiya. Mathematics , Tome 88 (2024) no. 5, pp. 856-872. http://geodesic.mathdoc.fr/item/IM2_2024_88_5_a1/