Finite abelian subgroups in the groups of birational and bimeromorphic selfmaps
Izvestiya. Mathematics , Tome 88 (2024) no. 5, pp. 856-872.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a complex projective variety. Suppose that the group of birational automorphisms of $X$ contains finite subgroups isomorphic to $(\mathbb{Z}/N\mathbb{Z})^r$ for $r$ fixed and $N$ arbitrarily large. We show that $r$ does not exceed $2\dim(X)$. Moreover, the equality holds if and only if $X$ is birational to an abelian variety. We also show that an analogous result holds for groups of bimeromorphic automorphisms of compact Kähler spaces under some additional assumptions.
Keywords: compact Kähler space, finite abelian group.
Mots-clés : birational map, bimeromorphic map
@article{IM2_2024_88_5_a1,
     author = {A. S. Golota},
     title = {Finite abelian subgroups in the groups of birational and bimeromorphic selfmaps},
     journal = {Izvestiya. Mathematics },
     pages = {856--872},
     publisher = {mathdoc},
     volume = {88},
     number = {5},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_5_a1/}
}
TY  - JOUR
AU  - A. S. Golota
TI  - Finite abelian subgroups in the groups of birational and bimeromorphic selfmaps
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 856
EP  - 872
VL  - 88
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_5_a1/
LA  - en
ID  - IM2_2024_88_5_a1
ER  - 
%0 Journal Article
%A A. S. Golota
%T Finite abelian subgroups in the groups of birational and bimeromorphic selfmaps
%J Izvestiya. Mathematics 
%D 2024
%P 856-872
%V 88
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_5_a1/
%G en
%F IM2_2024_88_5_a1
A. S. Golota. Finite abelian subgroups in the groups of birational and bimeromorphic selfmaps. Izvestiya. Mathematics , Tome 88 (2024) no. 5, pp. 856-872. http://geodesic.mathdoc.fr/item/IM2_2024_88_5_a1/

[1] D. N. Akhiezer, Lie group actions in complex analysis, Aspects Math., E27, Friedr. Vieweg Sohn, Braunschweig, 1995 | DOI | MR | Zbl

[2] M. Artin, Algebra, Prentice Hall, Inc., Englewood Cliffs, NJ, 1991 | MR | Zbl

[3] C. Birkar, “Singularities of linear systems and boundedness of Fano varieties”, Ann. of Math. (2), 193:2 (2021), 347–405 | DOI | MR | Zbl

[4] E. Bierstone and P. D. Milman, “Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant”, Invent. Math., 128:2 (1997), 207–302 | DOI | MR | Zbl

[5] S. Boucksom, “Divisorial Zariski decompositions on compact complex manifolds”, Ann. Sci. École Norm. Sup. (4), 37:1 (2004), 45–76 | DOI | MR | Zbl

[6] T. Bandman and Yu. G. Zarhin, “Jordan groups, conic bundles and abelian varieties”, Algebr. Geom., 4:2 (2017), 229–246 | DOI | MR | Zbl

[7] F. Campana, “Connexité rationnelle des variétés de Fano”, Ann. Sci. École Norm. Sup. (4), 25:5 (1992), 539–545 | DOI | MR | Zbl

[8] F. Campana, “Orbifolds, special varieties and classification theory: an appendix”, Ann. Inst. Fourier (Grenoble), 54:3 (2004), 631–665 | DOI | MR | Zbl

[9] A. Fujiki, “Closedness of the Douady spaces of compact Kähler spaces”, Publ. Res. Inst. Math. Sci., 14:1 (1978/79), 1–52 | DOI | MR | Zbl

[10] A. S. Golota, “Jordan property for groups of bimeromorphic automorphisms of compact Kähler threefolds”, Sb. Math., 214:1 (2023), 28–38 | DOI

[11] T. Graber, J. Harris, and J. Starr, “Families of rationally connected varieties”, J. Amer. Math. Soc., 16:1 (2003), 57–67 | DOI | MR | Zbl

[12] H. Grauert and R. Remmert, Coherent analytic sheaves, Grundlehren Math. Wiss., 265, Springer-Verlag, Berlin, 1984 | DOI | MR | Zbl

[13] A. Höring and Th. Peternell, “Mori fibre spaces for Kähler threefolds”, J. Math. Sci. Univ. Tokyo, 22:1 (2015), 219–246 | MR | Zbl

[14] A. Höring and Th. Peternell, “Minimal models for Kähler threefolds”, Invent. Math., 203:1 (2016), 217–264 | DOI | MR | Zbl

[15] C. Jordan, “Mémoire sur les équations différentielles linéaires à intégrale algébrique”, J. Reine Angew. Math., 1878:84 (1878), 89–215 | DOI | MR | Zbl

[16] Jin Hong Kim, “Jordan property and automorphism groups of normal compact Kähler varieties”, Commun. Contemp. Math., 20:3 (2018), 1750024 | DOI | MR | Zbl

[17] J. Kollár, Y. Miyaoka, and Sh. Mori, “Rationally connected varieties”, J. Algebraic Geom., 1:3 (1992), 429–448 | MR | Zbl

[18] D. I. Lieberman, “Compactness of the Chow scheme: applications to automorphisms and deformations of Kähler manifolds”, Fonctions de plusieurs variables complexes, III, Sém. François Norguet, 1975–1977, Lecture Notes in Math., 670, Springer, Berlin, 1978, 140–186 | DOI | MR | Zbl

[19] J. Moraga, Kawamata log terminal singularities of full rank, arXiv: 2007.10322

[20] J. Moraga, “Fano-type surfaces with large cyclic automorphisms”, Forum Math. Sigma, 9 (2021), e54, 27 pp. | DOI | MR | Zbl

[21] J. Moraga, On a toroidalization of klt singularities, arXiv: 2106.15019

[22] I. Mundet i Riera, “Discrete degree of symmetry of manifolds”, Transform. Groups, 2024, 1–38, Publ. online | DOI

[23] V. L. Popov, “On the Makar-Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties”, Affine algebraic geometry, CRM Proc. Lecture Notes, 54, Amer. Math. Soc., Providence, RI, 2011, 289–311 | DOI | MR | Zbl

[24] Yu. Prokhorov and C. Shramov, “Jordan property for groups of birational selfmaps”, Compos. Math., 150:12 (2014), 2054–2072 | DOI | MR | Zbl

[25] Yu. Prokhorov and C. Shramov, “Jordan property for Cremona groups”, Amer. J. Math., 138:2 (2016), 403–418 | DOI | MR | Zbl

[26] Yu. Prokhorov and C. Shramov, “Finite groups of birational selfmaps of threefolds”, Math. Res. Lett., 25:3 (2018), 957–972 | DOI | MR | Zbl

[27] Yu. G. Prokhorov and C. A. Shramov, “Finite groups of bimeromorphic selfmaps of uniruled Kähler threefolds”, Izv. Math., 84:5 (2020), 978–1001 | DOI

[28] Yu. G. Prokhorov and C. A. Shramov, “Finite groups of bimeromorphic self-maps of nonuniruled Kähler threefolds”, Sb. Math., 213:12 (2022), 1695–1714 | DOI

[29] G. R. Robinson, “On linear groups”, J. Algebra, 131:2 (1990), 527–534 | DOI | MR | Zbl

[30] J.-P. Serre, “Bounds for the orders of the finite subgroups of $G(k)$”, Group representation theory, EPFL Press, Lausanne, 2007, 405–450 | MR | Zbl

[31] H. Sumihiro, “Equivariant completion”, J. Math. Kyoto Univ., 14 (1974), 1–28 | DOI | MR | Zbl

[32] K. Ueno, Classification theory of algebraic varieties and compact complex spaces, Notes written in collaboration with P. Cherenack, Lecture Notes in Math., 439, Springer-Verlag, Berlin–New York, 1975 | DOI | MR | Zbl

[33] D. Wright, “Abelian subgroups of $\operatorname{Aut}_{k}(k[X,Y])$ and applications to actions on the affine plane”, Illinois J. Math., 23:4 (1979), 579–634 | DOI | MR | Zbl

[34] Jinsong Xu, Finite $p$-groups of birational automorphisms and characterizations of rational varieties, arXiv: 1809.09506

[35] Jinsong Xu, “A remark on the rank of finite $p$-groups of birational automorphisms”, C. R. Math. Acad. Sci. Paris, 358:7 (2020), 827–829 | DOI | MR | Zbl

[36] Yu. G. Zarhin, “Theta groups and products of Abelian and rational varieties”, Proc. Edinb. Math. Soc. (2), 57:1 (2014), 299–304 | DOI | MR | Zbl