Models of representations for classical series of Lie algebras
Izvestiya. Mathematics , Tome 88 (2024) no. 5, pp. 815-855.

Voir la notice de l'article provenant de la source Math-Net.Ru

By a model of representations of a Lie algebra we mean a representation which is a direct sum of all irreducible finite-dimensional representations taken with multiplicity $1$. An explicit construction of a model of representations for all classical series of simple Lie algebras is given. This construction is generic for all classical series of Lie algebras. The space of the model is constructed as the space of polynomial solutions of a system of partial differential equations, where the equations are constructed form relations between minors of matrices taken from the corresponding Lie group. This system admits a simplification very close to the GKZ system, which is satisfied by $A$-hypergeometric functions.
Keywords: hypergeometric functions, the Gelfand–Tsetlin base.
Mots-clés : Lie algebras
@article{IM2_2024_88_5_a0,
     author = {D. V. Artamonov},
     title = {Models of representations for classical series of {Lie} algebras},
     journal = {Izvestiya. Mathematics },
     pages = {815--855},
     publisher = {mathdoc},
     volume = {88},
     number = {5},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_5_a0/}
}
TY  - JOUR
AU  - D. V. Artamonov
TI  - Models of representations for classical series of Lie algebras
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 815
EP  - 855
VL  - 88
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_5_a0/
LA  - en
ID  - IM2_2024_88_5_a0
ER  - 
%0 Journal Article
%A D. V. Artamonov
%T Models of representations for classical series of Lie algebras
%J Izvestiya. Mathematics 
%D 2024
%P 815-855
%V 88
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_5_a0/
%G en
%F IM2_2024_88_5_a0
D. V. Artamonov. Models of representations for classical series of Lie algebras. Izvestiya. Mathematics , Tome 88 (2024) no. 5, pp. 815-855. http://geodesic.mathdoc.fr/item/IM2_2024_88_5_a0/

[1] W. Fulton, Young tableaux, With applications to representation theory and geometry, London Math. Soc. Stud. Texts, 35, Cambridge Univ. Press, Cambridge, 1997 | DOI | MR | Zbl

[2] W. Fulton and J. Harris, Representation theory. A first course, Grad. Texts in Math., 129, Springer-Verlag, New York, 1991 | DOI | MR | Zbl

[3] Jing-Song Huang and Chen-Bo Zhu, “Weyl's construction and tensor power decomposition for $G_2$”, Proc. Amer. Math. Soc., 127:3 (1999), 925–934 | DOI | MR | Zbl

[4] G. E. Baird and L. C. Biedenharn, “On the representations of semisimple Lie groups. II”, J. Math. Phys., 4:12 (1963), 1449–1466 | DOI | MR | Zbl

[5] W. J. Holman, III, “Representation theory of $SP(4)$ and $SO(5)$”, J. Math. Phys., 10 (1969), 1710–1717 | DOI | MR | Zbl

[6] O. Castaños, E. Chacón, M. Moshinsky, and C. Quesne, “Boson realization of $\operatorname{sp}(4)$. I. The matrix formulation”, J. Math. Phys., 26:9 (1985), 2107–2123 | DOI | MR | Zbl

[7] O. Castaños, P. Kramer, and M. Moshinsky, “Boson realization of $\operatorname{sp}(4,R)$. II. The generating kernel formulation”, J. Math. Phys., 27:4 (1986), 924–935 | DOI | MR | Zbl

[8] J. P. Draayer, A. I. Georgieva, and M. I. Ivanov, “Deformations of the boson $sp(4,R)$ representation and its subalgebras”, J. Phys. A, 34:14 (2001), 2999–3014 | DOI | MR | Zbl

[9] D. P. Želobenko, Compact Lie groups and their representations, Transl. Math. Monogr., 40, Amer. Math. Soc., Providence, RI, 1973 | DOI | MR | Zbl

[10] L. C. Biedenharn and D. E. Flath, “On the structure of tensor operators in SU3”, Comm. Math. Phys., 93:2 (1984), 143–169 | DOI | MR | Zbl

[11] D. E. Flath, “On $\mathfrak{so}_8$ and tensor operators of $\mathfrak{sl}_3$”, Bull. Amer. Math. Soc. (N.S.), 10:1 (1984), 97–100 | DOI | MR | Zbl

[12] I. M. Gel'fand and A. V. Zelevinskii, “Models of representations of classical groups and their hidden symmetries”, Funct. Anal. Appl., 18:3 (1984), 183–198 | DOI

[13] È. B. Vinberg and V. L. Popov, “On a class of quasihomogeneous affine varieties”, Math. USSR-Izv., 6:4 (1972), 743–758 | DOI

[14] D. V. Artamonov, “A functional realization of the Gelfand–Tsetlin base”, Izv. Math., 87:6 (2023), 1117–1147 | DOI

[15] D. V. Artamonov, “Antisymmetrization of the Gel'fand–Kapranov–Zelevinskij systems”, J. Math. Sci. (N.Y.), 255:5 (2021), 535–542 | DOI | MR | Zbl

[16] I. M. Gel'fand, M. I. Graev, and V. S. Retakh, “General hypergeometric systems of equations and series of hypergeometric type”, Russian Math. Surveys, 47:4 (1992), 1–88 | DOI

[17] N. Ja. Vilenkin, Special functions and the theory of group representations, Transl. Math. Monogr., 22, Amer. Math. Soc., Providence, RI, 1968 | MR | Zbl

[18] D. V. Artamonov, “Formulas for calculating the $3j$-symbols of the representations of the Lie algebra $\mathfrak{gl}_3$ for the Gelfand–Tsetlin bases”, Siberian Math. J., 63:4 (2022), 595–610 | DOI

[19] D. V. Artamonov, “Classical $6j$-symbols of finite-dimensional representations of the algebra $\mathfrak{gl}_3$”, Theoret. Math. Phys., 216:1 (2023), 909–923 | DOI

[20] D. V. Artamonov, “A Gelfand–Tsetlin-type basis for the algebra $\mathfrak{sp}_4$ and hypergeometric functions”, Theoret. Math. Phys., 206:3 (2021), 243–257 | DOI

[21] D. V. Artamonov, “Functional approach to a Gelfand–Tsetlin-type basis for $\mathfrak{o}_5$”, Theoret. Math. Phys., 211:1 (2022), 443–459 | DOI

[22] A. Molev, Yangians and classical Lie algebras, Math. Surveys Monogr., 143, Amer. Math. Soc., Providence, RI, 2007 | DOI | MR | Zbl

[23] A. Berenstein and A. Zelevinsky, “Tensor product multiplicities, canonical bases and totally positive varieties”, Invent. Math., 143:1 (2001), 77–128 | DOI | MR | Zbl

[24] E. Feigin, G. Fourier, and P. Littelmann, “PBW filtration and bases for irreducible modules in type $\mathsf A_n$”, Transform. Groups, 16:1 (2011), 71–89 | DOI | MR | Zbl

[25] A. A. Gerasimov, D. R. Lebedev, and S. V. Oblezin, “On a matrix element representation of the GKZ hypergeometric functions”, Lett. Math. Phys., 113:2 (2023), 43 | DOI | MR | Zbl

[26] E. Miller and B. Sturmfels, Combinatorial commutative algebra, Grad. Texts in Math., 227, Springer-Verlag, New York, 2005 | DOI | MR | Zbl

[27] F. R. Gantmacher, The theory of matrices, v. 1, 2, Chelsea Publishing Co., New York, 1959 | MR | Zbl

[28] A. D. Bruno, Power geometry in algebraic and differential equations, North-Holland Math. Library, 57, North-Holland Publishing Co., Amsterdam, 2000 | MR | Zbl

[29] M. Saito, B. Sturmfels, and N. Takayama, Gröbner deformations of hypergeometric differential equations, Algorithms Comput. Math., 6, Springer-Verlag, Berlin, 2000 | DOI | MR | Zbl

[30] Xin Fang, G. Fourier, and P. Littelmann, “On toric degenerations of flag varieties”, Representation theory–current trends and perspectives, EMS Ser. Congr. Rep., Eur. Math. Soc. (EMS), Zürich, 2017, 187–232 | DOI | MR | Zbl

[31] M. Kogan and E. Miller, “Toric degeneration of Schubert varieties and Gelfand–Tsetlin polytopes”, Adv. Math., 193:1 (2005), 1–17 | DOI | MR | Zbl

[32] I. Makhlin, “Gelfanf–Tsetlin degenerations of representations and flag varieties”, Transform. Groups, 27:2 (2022), 563–596 | DOI | MR | Zbl