Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2024_88_5_a0, author = {D. V. Artamonov}, title = {Models of representations for classical series of {Lie} algebras}, journal = {Izvestiya. Mathematics }, pages = {815--855}, publisher = {mathdoc}, volume = {88}, number = {5}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_5_a0/} }
D. V. Artamonov. Models of representations for classical series of Lie algebras. Izvestiya. Mathematics , Tome 88 (2024) no. 5, pp. 815-855. http://geodesic.mathdoc.fr/item/IM2_2024_88_5_a0/
[1] W. Fulton, Young tableaux, With applications to representation theory and geometry, London Math. Soc. Stud. Texts, 35, Cambridge Univ. Press, Cambridge, 1997 | DOI | MR | Zbl
[2] W. Fulton and J. Harris, Representation theory. A first course, Grad. Texts in Math., 129, Springer-Verlag, New York, 1991 | DOI | MR | Zbl
[3] Jing-Song Huang and Chen-Bo Zhu, “Weyl's construction and tensor power decomposition for $G_2$”, Proc. Amer. Math. Soc., 127:3 (1999), 925–934 | DOI | MR | Zbl
[4] G. E. Baird and L. C. Biedenharn, “On the representations of semisimple Lie groups. II”, J. Math. Phys., 4:12 (1963), 1449–1466 | DOI | MR | Zbl
[5] W. J. Holman, III, “Representation theory of $SP(4)$ and $SO(5)$”, J. Math. Phys., 10 (1969), 1710–1717 | DOI | MR | Zbl
[6] O. Castaños, E. Chacón, M. Moshinsky, and C. Quesne, “Boson realization of $\operatorname{sp}(4)$. I. The matrix formulation”, J. Math. Phys., 26:9 (1985), 2107–2123 | DOI | MR | Zbl
[7] O. Castaños, P. Kramer, and M. Moshinsky, “Boson realization of $\operatorname{sp}(4,R)$. II. The generating kernel formulation”, J. Math. Phys., 27:4 (1986), 924–935 | DOI | MR | Zbl
[8] J. P. Draayer, A. I. Georgieva, and M. I. Ivanov, “Deformations of the boson $sp(4,R)$ representation and its subalgebras”, J. Phys. A, 34:14 (2001), 2999–3014 | DOI | MR | Zbl
[9] D. P. Želobenko, Compact Lie groups and their representations, Transl. Math. Monogr., 40, Amer. Math. Soc., Providence, RI, 1973 | DOI | MR | Zbl
[10] L. C. Biedenharn and D. E. Flath, “On the structure of tensor operators in SU3”, Comm. Math. Phys., 93:2 (1984), 143–169 | DOI | MR | Zbl
[11] D. E. Flath, “On $\mathfrak{so}_8$ and tensor operators of $\mathfrak{sl}_3$”, Bull. Amer. Math. Soc. (N.S.), 10:1 (1984), 97–100 | DOI | MR | Zbl
[12] I. M. Gel'fand and A. V. Zelevinskii, “Models of representations of classical groups and their hidden symmetries”, Funct. Anal. Appl., 18:3 (1984), 183–198 | DOI
[13] È. B. Vinberg and V. L. Popov, “On a class of quasihomogeneous affine varieties”, Math. USSR-Izv., 6:4 (1972), 743–758 | DOI
[14] D. V. Artamonov, “A functional realization of the Gelfand–Tsetlin base”, Izv. Math., 87:6 (2023), 1117–1147 | DOI
[15] D. V. Artamonov, “Antisymmetrization of the Gel'fand–Kapranov–Zelevinskij systems”, J. Math. Sci. (N.Y.), 255:5 (2021), 535–542 | DOI | MR | Zbl
[16] I. M. Gel'fand, M. I. Graev, and V. S. Retakh, “General hypergeometric systems of equations and series of hypergeometric type”, Russian Math. Surveys, 47:4 (1992), 1–88 | DOI
[17] N. Ja. Vilenkin, Special functions and the theory of group representations, Transl. Math. Monogr., 22, Amer. Math. Soc., Providence, RI, 1968 | MR | Zbl
[18] D. V. Artamonov, “Formulas for calculating the $3j$-symbols of the representations of the Lie algebra $\mathfrak{gl}_3$ for the Gelfand–Tsetlin bases”, Siberian Math. J., 63:4 (2022), 595–610 | DOI
[19] D. V. Artamonov, “Classical $6j$-symbols of finite-dimensional representations of the algebra $\mathfrak{gl}_3$”, Theoret. Math. Phys., 216:1 (2023), 909–923 | DOI
[20] D. V. Artamonov, “A Gelfand–Tsetlin-type basis for the algebra $\mathfrak{sp}_4$ and hypergeometric functions”, Theoret. Math. Phys., 206:3 (2021), 243–257 | DOI
[21] D. V. Artamonov, “Functional approach to a Gelfand–Tsetlin-type basis for $\mathfrak{o}_5$”, Theoret. Math. Phys., 211:1 (2022), 443–459 | DOI
[22] A. Molev, Yangians and classical Lie algebras, Math. Surveys Monogr., 143, Amer. Math. Soc., Providence, RI, 2007 | DOI | MR | Zbl
[23] A. Berenstein and A. Zelevinsky, “Tensor product multiplicities, canonical bases and totally positive varieties”, Invent. Math., 143:1 (2001), 77–128 | DOI | MR | Zbl
[24] E. Feigin, G. Fourier, and P. Littelmann, “PBW filtration and bases for irreducible modules in type $\mathsf A_n$”, Transform. Groups, 16:1 (2011), 71–89 | DOI | MR | Zbl
[25] A. A. Gerasimov, D. R. Lebedev, and S. V. Oblezin, “On a matrix element representation of the GKZ hypergeometric functions”, Lett. Math. Phys., 113:2 (2023), 43 | DOI | MR | Zbl
[26] E. Miller and B. Sturmfels, Combinatorial commutative algebra, Grad. Texts in Math., 227, Springer-Verlag, New York, 2005 | DOI | MR | Zbl
[27] F. R. Gantmacher, The theory of matrices, v. 1, 2, Chelsea Publishing Co., New York, 1959 | MR | Zbl
[28] A. D. Bruno, Power geometry in algebraic and differential equations, North-Holland Math. Library, 57, North-Holland Publishing Co., Amsterdam, 2000 | MR | Zbl
[29] M. Saito, B. Sturmfels, and N. Takayama, Gröbner deformations of hypergeometric differential equations, Algorithms Comput. Math., 6, Springer-Verlag, Berlin, 2000 | DOI | MR | Zbl
[30] Xin Fang, G. Fourier, and P. Littelmann, “On toric degenerations of flag varieties”, Representation theory–current trends and perspectives, EMS Ser. Congr. Rep., Eur. Math. Soc. (EMS), Zürich, 2017, 187–232 | DOI | MR | Zbl
[31] M. Kogan and E. Miller, “Toric degeneration of Schubert varieties and Gelfand–Tsetlin polytopes”, Adv. Math., 193:1 (2005), 1–17 | DOI | MR | Zbl
[32] I. Makhlin, “Gelfanf–Tsetlin degenerations of representations and flag varieties”, Transform. Groups, 27:2 (2022), 563–596 | DOI | MR | Zbl