Asymptotic stability of solutions to quasilinear damped wave equations with variable sources
Izvestiya. Mathematics , Tome 88 (2024) no. 4, pp. 794-814.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the following quasilinear damped hyperbolic equation involving variable exponents: $$ u_{tt}-\operatorname{div}\bigl( |\nabla u|^{r(x)-2}\nabla u\bigr)+|u_t|^{m(x)-2} u_t-\Delta u_t=|u|^{q(x)-2}u, $$ with homogenous Dirichlet initial boundary value condition. An energy estimate and Komornik's inequality are used to prove uniform estimate of decay rates of the solution. We also show that $u(x, t)=0$ is asymptotic stable in terms of natural energy associated with the solution of the above equation. As we know, such results are seldom seen for the variable exponent case. At last, we give some numerical examples to illustrate our results.
Keywords: Komornik inequality, $r(x)$-Laplacian operator, damped quasilinear, variable exponent.
@article{IM2_2024_88_4_a6,
     author = {Xiaoxin Yang and Xiulan Wu and Jibao Zhuang},
     title = {Asymptotic stability of solutions to quasilinear damped wave equations with variable sources},
     journal = {Izvestiya. Mathematics },
     pages = {794--814},
     publisher = {mathdoc},
     volume = {88},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a6/}
}
TY  - JOUR
AU  - Xiaoxin Yang
AU  - Xiulan Wu
AU  - Jibao Zhuang
TI  - Asymptotic stability of solutions to quasilinear damped wave equations with variable sources
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 794
EP  - 814
VL  - 88
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a6/
LA  - en
ID  - IM2_2024_88_4_a6
ER  - 
%0 Journal Article
%A Xiaoxin Yang
%A Xiulan Wu
%A Jibao Zhuang
%T Asymptotic stability of solutions to quasilinear damped wave equations with variable sources
%J Izvestiya. Mathematics 
%D 2024
%P 794-814
%V 88
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a6/
%G en
%F IM2_2024_88_4_a6
Xiaoxin Yang; Xiulan Wu; Jibao Zhuang. Asymptotic stability of solutions to quasilinear damped wave equations with variable sources. Izvestiya. Mathematics , Tome 88 (2024) no. 4, pp. 794-814. http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a6/

[1] L. Diening, P. Harjulehto, P. Hästö, and M. Růžička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Math., 2017, Springer, Heidelberg, 2011 | DOI | MR | Zbl

[2] S. A. Messaoudi and A. A. Talahmeh, “On wave equation: review and recent results”, Arab. J. Math. (Springer), 7:2 (2018), 113–145 | DOI | MR | Zbl

[3] S. Antontsev and S. Shmarev, Evolution PDEs with nonstandard growth conditions. Existence, uniqueness, localization, blow-up, Atlantis Stud. Differ. Equ., 4, Atlantis Press, Paris, 2015 | DOI | MR | Zbl

[4] Yunmei Chen, S. Levine, and M. Rao, “Variable exponent, linear growth functionals in image restoration”, SIAM J. Appl. Math., 66:4 (2006), 1383–1406 | DOI | MR | Zbl

[5] V. D. Rădulescu and D. D. Repovš, Partial differential equations with variable exponents. Variational methods and qualitative analysis, Monogr. Res. Notes Math., CRC Press, Boca Raton, FL, 2015 | DOI | MR | Zbl

[6] S. Antontsev, “Wave equation with $p(x, t)$-Laplacian and damping term: existence and blow-up”, Differ. Equ. Appl., 3:4 (2011), 503–525 | DOI | MR | Zbl

[7] S. Antontsev and J. Ferreira, “Existence, uniqueness and blowup for hyperbolic equations with nonstandard growth conditions”, Nonlinear Anal., 93 (2013), 62–77 | DOI | MR | Zbl

[8] G. Autuori, P. Pucci, and M. C. Salvatori, “Global nonexistence for nonlinear Kirchhoff systems”, Arch. Ration. Mech. Anal., 196:2 (2010), 489–516 | DOI | MR | Zbl

[9] Bin Guo and Wenjie Gao, “Blow-up of solutions to quasilinear hyperbolic equations with $p(x, t)$-Laplacian and positive initial energy”, C. R. Mécanique, 342:9 (2014), 513–519 | DOI

[10] S. A. Messaoudi and A. A. Talahmeh, “A blow-up result for a nonlinear wave equation with variable-exponent nonlinearities”, Appl. Anal., 96:9 (2017), 1509–1515 | DOI | MR | Zbl

[11] S. A. Messaoudi and A. A. Talahmeh, “Blowup in solutions of a quasilinear wave equation with variable-exponent nonlinearities”, Math. Methods Appl. Sci., 40:18 (2017), 6976–6986 | DOI | MR | Zbl

[12] S. A. Messaoudi, A. A. Talahmeh, and J. H. Al-Smail, “Nonlinear damped wave equation: existence and blow-up”, Comput. Math. Appl., 74:12 (2017), 3024–3041 | DOI | MR | Zbl

[13] S. A. Messaoudi, J. H. Al-Smail, and A. A. Talahmeh, “Decay for solutions of a nonlinear damped wave equation with variable-exponent nonlinearities”, Comput. Math. Appl., 76:8 (2018), 1863-1875 | DOI | MR | Zbl

[14] Xiaolei Li, Bin Guo, and Menglan Liao, “Asymptotic stability of solutions to quasilinear hyperbolic equations with variable sources”, Comput. Math. Appl., 79:4 (2020), 1012–1022 | DOI | MR | Zbl

[15] V. Komornik, Exact controllability and stabilization. The multiplier method, RAM Res. Appl. Math., Masson, Paris; John Wiley Sons, Ltd., Chichester, 1994 | MR | Zbl

[16] J. Haehnle and A. Prohl, “Approximation of nonlinear wave equations with nonstandard anisotropic growth conditions”, Math. Comp., 79:269 (2010), 189–208 | DOI | MR | Zbl