Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2024_88_4_a6, author = {Xiaoxin Yang and Xiulan Wu and Jibao Zhuang}, title = {Asymptotic stability of solutions to quasilinear damped wave equations with variable sources}, journal = {Izvestiya. Mathematics }, pages = {794--814}, publisher = {mathdoc}, volume = {88}, number = {4}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a6/} }
TY - JOUR AU - Xiaoxin Yang AU - Xiulan Wu AU - Jibao Zhuang TI - Asymptotic stability of solutions to quasilinear damped wave equations with variable sources JO - Izvestiya. Mathematics PY - 2024 SP - 794 EP - 814 VL - 88 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a6/ LA - en ID - IM2_2024_88_4_a6 ER -
%0 Journal Article %A Xiaoxin Yang %A Xiulan Wu %A Jibao Zhuang %T Asymptotic stability of solutions to quasilinear damped wave equations with variable sources %J Izvestiya. Mathematics %D 2024 %P 794-814 %V 88 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a6/ %G en %F IM2_2024_88_4_a6
Xiaoxin Yang; Xiulan Wu; Jibao Zhuang. Asymptotic stability of solutions to quasilinear damped wave equations with variable sources. Izvestiya. Mathematics , Tome 88 (2024) no. 4, pp. 794-814. http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a6/
[1] L. Diening, P. Harjulehto, P. Hästö, and M. Růžička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Math., 2017, Springer, Heidelberg, 2011 | DOI | MR | Zbl
[2] S. A. Messaoudi and A. A. Talahmeh, “On wave equation: review and recent results”, Arab. J. Math. (Springer), 7:2 (2018), 113–145 | DOI | MR | Zbl
[3] S. Antontsev and S. Shmarev, Evolution PDEs with nonstandard growth conditions. Existence, uniqueness, localization, blow-up, Atlantis Stud. Differ. Equ., 4, Atlantis Press, Paris, 2015 | DOI | MR | Zbl
[4] Yunmei Chen, S. Levine, and M. Rao, “Variable exponent, linear growth functionals in image restoration”, SIAM J. Appl. Math., 66:4 (2006), 1383–1406 | DOI | MR | Zbl
[5] V. D. Rădulescu and D. D. Repovš, Partial differential equations with variable exponents. Variational methods and qualitative analysis, Monogr. Res. Notes Math., CRC Press, Boca Raton, FL, 2015 | DOI | MR | Zbl
[6] S. Antontsev, “Wave equation with $p(x, t)$-Laplacian and damping term: existence and blow-up”, Differ. Equ. Appl., 3:4 (2011), 503–525 | DOI | MR | Zbl
[7] S. Antontsev and J. Ferreira, “Existence, uniqueness and blowup for hyperbolic equations with nonstandard growth conditions”, Nonlinear Anal., 93 (2013), 62–77 | DOI | MR | Zbl
[8] G. Autuori, P. Pucci, and M. C. Salvatori, “Global nonexistence for nonlinear Kirchhoff systems”, Arch. Ration. Mech. Anal., 196:2 (2010), 489–516 | DOI | MR | Zbl
[9] Bin Guo and Wenjie Gao, “Blow-up of solutions to quasilinear hyperbolic equations with $p(x, t)$-Laplacian and positive initial energy”, C. R. Mécanique, 342:9 (2014), 513–519 | DOI
[10] S. A. Messaoudi and A. A. Talahmeh, “A blow-up result for a nonlinear wave equation with variable-exponent nonlinearities”, Appl. Anal., 96:9 (2017), 1509–1515 | DOI | MR | Zbl
[11] S. A. Messaoudi and A. A. Talahmeh, “Blowup in solutions of a quasilinear wave equation with variable-exponent nonlinearities”, Math. Methods Appl. Sci., 40:18 (2017), 6976–6986 | DOI | MR | Zbl
[12] S. A. Messaoudi, A. A. Talahmeh, and J. H. Al-Smail, “Nonlinear damped wave equation: existence and blow-up”, Comput. Math. Appl., 74:12 (2017), 3024–3041 | DOI | MR | Zbl
[13] S. A. Messaoudi, J. H. Al-Smail, and A. A. Talahmeh, “Decay for solutions of a nonlinear damped wave equation with variable-exponent nonlinearities”, Comput. Math. Appl., 76:8 (2018), 1863-1875 | DOI | MR | Zbl
[14] Xiaolei Li, Bin Guo, and Menglan Liao, “Asymptotic stability of solutions to quasilinear hyperbolic equations with variable sources”, Comput. Math. Appl., 79:4 (2020), 1012–1022 | DOI | MR | Zbl
[15] V. Komornik, Exact controllability and stabilization. The multiplier method, RAM Res. Appl. Math., Masson, Paris; John Wiley Sons, Ltd., Chichester, 1994 | MR | Zbl
[16] J. Haehnle and A. Prohl, “Approximation of nonlinear wave equations with nonstandard anisotropic growth conditions”, Math. Comp., 79:269 (2010), 189–208 | DOI | MR | Zbl