An iterative method for solving one class of non-linear integral equations
Izvestiya. Mathematics , Tome 88 (2024) no. 4, pp. 760-793.

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of non-linear integral equations with monotone Nemytskii operator on the positive semi-axis is considered. This class of integral equations appears in many areas of modern natural science. In particular, such equations, with various restrictions on non-linearity and the kernel, arise in the dynamic theory of $p$-adic strings for the scalar field of tachyons, in the kinetic theory of gases and plasma within the framework of the usual and modified non-linear Bhatnagar–Gross–Crook models for the Boltzmann kinetic equation. Equations of similar nature appear also in the non-linear radiative transfer theory in inhomogeneous media and in the mathematical theory of the spread of epidemic diseases within the framework of the modified Diekmann–Kaper model. A constructive theorem for the existence of a bounded positive and continuous solution is proved. As a result, we get a uniform estimate of the difference between the previous and subsequent iterations, the corresponding successive approximations converge uniformly to a bounded continuous solution to the equation. The asymptotic behaviour of the constructed solution at infinity is studied. In particular, it is proved that the limit of this solution at infinity exists and is positive, and is uniquely determined from a certain characteristic equation. It is also proved that the difference between the limit and the solution is a summable function on the positive semi-axis. Using some geometric estimates for convex and concave functions, and employing the theorem on integral asymptotics obtained here, we prove the uniqueness of the solution in a certain subclass of non-negative non-trivial continuous and bounded functions. The results obtained are also applied to the study of a special class of non-linear Urysohn type integral equations on the positive semi-axis. In particular, the existence of a positive bounded solution to this class of equations is verified, and some qualitative properties of the constructed solution are studied. We also give specific applied examples of the corresponding kernels and non-linearities to illustrate the importance of the results obtained.
Keywords: bounded solution, monotonicity, limit of the solution, asymptotics, convergence, uniform estimate, concavity.
@article{IM2_2024_88_4_a5,
     author = {Kh. A. Khachatryan and H. S. Petrosyan},
     title = {An iterative method for solving one class of non-linear integral equations},
     journal = {Izvestiya. Mathematics },
     pages = {760--793},
     publisher = {mathdoc},
     volume = {88},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a5/}
}
TY  - JOUR
AU  - Kh. A. Khachatryan
AU  - H. S. Petrosyan
TI  - An iterative method for solving one class of non-linear integral equations
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 760
EP  - 793
VL  - 88
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a5/
LA  - en
ID  - IM2_2024_88_4_a5
ER  - 
%0 Journal Article
%A Kh. A. Khachatryan
%A H. S. Petrosyan
%T An iterative method for solving one class of non-linear integral equations
%J Izvestiya. Mathematics 
%D 2024
%P 760-793
%V 88
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a5/
%G en
%F IM2_2024_88_4_a5
Kh. A. Khachatryan; H. S. Petrosyan. An iterative method for solving one class of non-linear integral equations. Izvestiya. Mathematics , Tome 88 (2024) no. 4, pp. 760-793. http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a5/

[1] I. Ya. Aref'eva, B. G. Dragovic, and I. V. Volovich, “Open and closed $p$-adic strings and quadratic extensions of number fields”, Phys. Lett. B, 212:3 (1988), 283–291 | DOI | MR

[2] V. S. Vladimirov and Ya. I. Volovich, “Nonlinear dynamics equation in $p$-adic string theory”, Theoret. and Math. Phys., 138:3 (2004), 297–309 | DOI

[3] V. S. Vladimirov, “Nonexistence of solutions of the $p$-adic strings”, Theoret. and Math. Phys., 174:2 (2013), 178–185 | DOI

[4] V. S. Vladimirov, “Nonlinear equations for $p$-adic open, closed, and open-closed strings”, Theoret. and Math. Phys., 149:3 (2006), 1604–1616 | DOI

[5] C. Atkinson and G. E. H. Reuter, “Deterministic epidemic waves”, Math. Proc. Cambridge Philos. Soc., 80:2 (1976), 315–330 | DOI | MR | Zbl

[6] O. Diekmann, “Thresholds and travelling waves for the geographical spread of infection”, J. Math. Biol., 6:2 (1978), 109–130 | DOI | MR | Zbl

[7] A. Kh. Khachatryan and Kh. A. Khachatryan, “On the solvability of some nonlinear integral equations in problems of epidemic spread”, Proc. Steklov Inst. Math., 306 (2019), 271–287 | DOI

[8] O. Diekmann and H. G. Kaper, “On the bounded solutions of a nonlinear convolution equation”, Nonlinear Anal., 2:6 (1978), 721–737 | DOI | MR | Zbl

[9] C. Cercignani, The Boltzmann equation and its applications, Appl. Math. Sci., 67, Springer-Verlag, New-York, 1988 | DOI | MR | Zbl

[10] C. Villani, “Cercignani's conjecture is sometimes true and always almost true”, Comm. Math. Phys., 234:3 (2003), 455–490 | DOI | MR | Zbl

[11] A. Kh. Khachatryan and Kh. A. Khachatryan, “Some problems concerning the solvability of the nonlinear stationary Boltzmann equation in the framework of the BGK model”, Trans. Moscow Math. Soc., 77 (2016), 87–106 | DOI | MR

[12] N. B. Engibaryan, “On a problem in nonlinear radiative transfer”, Astrophysics, 2:1 (1966), 12–14 | DOI

[13] N. B. Engibaryan, “A nonlinear problem of radiative transfer”, Astrophysics, 1:1 (1965), 158–159 | DOI

[14] W. Okrasiński, “On the existence and uniqueness of nonnegative solutions of a certain nonlinear convolution equation”, Ann. Polon. Math., 36:1 (1979), 61–72 | DOI | MR | Zbl

[15] W. Okrasiński, “Nonlinear Volterra equations and physical applications”, Extracta Math., 4:2 (1989), 51–80 | MR

[16] P. Urysohn, “Sur une classe d'équations intégrales non lineaires”, Mat. Sb., 31:2 (1923), 236–255

[17] A. Hammerstein, “Nichtlineare Integralgleichungen nebst Anwendungen”, Acta Math., 54:1 (1930), 117–176 | DOI | MR | Zbl

[18] M. A. Krasnosel'skiĭ, “Fixed points of cone-compressing or cone-extending operators”, Soviet Math. Dokl., 1 (1960), 1285–1288

[19] P. P. Zabreiko, R. I. Kachurovskii, and M. A. Krasnosel'skii, “On a fixed-point principle for operators in a Hilbert space”, Funct. Anal. Appl., 1:2 (1967), 168–169 | DOI

[20] F. E. Browder, “Nonlinear operators in Banach spaces”, Math. Ann., 162 (1965/1966), 280–283 | DOI | MR | Zbl

[21] F. E. Browder, “Fixed point theorems for nonlinear semicontractive mappings in Banach spaces”, Arch. Ration. Mech. Anal., 21 (1966), 259–269 | DOI | MR | Zbl

[22] F. E. Browder and C. P. Gupta, “Monotone operators and nonlinear integral equations of Hammerstein type”, Bull. Amer. Math. Soc., 75 (1969), 1347–1353 | DOI | MR | Zbl

[23] P. P. Zabreiko and A. I. Povolotskii, “Quasilinear operators and Hammerstein's equation”, Math. Notes, 12:4 (1972), 705–711 | DOI

[24] P. P. Zabreiko and E. I. Pustyl'nik, “On continuity and complete continuity of nonlinear integral operators in $L_p$ spaces”, Uspekhi Mat. Nauk, 19:2(116) (1964), 204–205 (Russian)

[25] M. A. Krasnosel'skiĭ, Positive solutions of operator equations, P. Noordhoff Ltd., Groningen, 1964 | MR | Zbl

[26] G. Emmanuele, “An existence theorem for Hammerstein integral equations”, Port. Math., 51:4 (1994), 607–611 | MR | Zbl

[27] H. Brezis and F. E. Browder, “Existence theorems for nonlinear integral equations of Hammerstein type”, Bull. Amer. Math. Soc., 81:1 (1975), 73–78 | DOI | MR | Zbl

[28] S. N. Askhabov, “Nonlinear integral equations with potential-type kernels on a segment”, J. Math. Sci. (N.Y.), 235:4 (2018), 375–391 | DOI

[29] H. Gajewski, K. Gröger, and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Math. Lehrbucher und Monogr., 38, Akademie-Verlag, Berlin, 1974 | MR | Zbl

[30] Kh. A. Khachatryan and H. S. Petrosyan, “On the solvability of a class of nonlinear Hammerstein–Stieltjes integral equations on the whole line”, Proc. Steklov Inst. Math., 308 (2020), 238–249 | DOI

[31] L. G. Arabadzhyan, “Solutions of certain integral equations of the Hammerstein type”, J. Contemp. Math. Anal., 32:1 (1997), 17–24

[32] Kh. A. Khachatryan and H. S. Petrosyan, “One-parameter families of positive solutions of some classes of nonlinear convolution type integral equations”, J. Math. Sci. (N.Y.), 231:2 (2018), 153–167 | DOI

[33] Kh. A. Khachatryan, “On a class of nonlinear integral equations with a noncompact operator”, J. Contemp. Math. Anal., 46:2 (2011), 89–100 | DOI

[34] Kh. A. Khachatryan, “One-parameter family of solutions for one class of Hammerstein nonlinear equations on a half-line”, Dokl. Math., 80:3 (2009), 872–876 | DOI

[35] Kh. A. Khachatryan, “Positive solubility of some classes of non-linear integral equations of Hammerstein type on the semi-axis and on the whole line”, Izv. Math., 79:2 (2015), 411–430 | DOI

[36] Kh. A. Khachatryan, “On a class of integral equations of Urysohn type with strong non-linearity”, Izv. Math., 76:1 (2012), 163–189 | DOI

[37] Kh. A. Khachatryan and H. S. Petrosyan, “On the construction of an integrable solution to one class of nonlinear integral equations of Hammerstein-Nemytskii type on the whole axis”, Trudy Inst. Mat. i Mekh. UrO RAN, 26, no. 2, 2020, 278–287 | DOI | MR

[38] H. S. Petrosyan, “On solution of a class of Hammerstein type nonlinear integral equations on the positive half-line in the critical case”, Proc. Yerevan State Univ., 48:3(235) (2014), 31–39 | Zbl

[39] T. Sardaryan, “Integrable solution of one Hammerstein–Volterra type nonlinear integral equation on semi-axis”, Vestnik RAU. Fiz.-Matem. Nauki, 2015, no. 1, 5–16 (Russian)

[40] V. S. Vladimirov, “Solutions of $p$-adic string equations”, Theoret. and Math. Phys., 167:2 (2011), 539–546 | DOI

[41] V. S. Vladimirov, “The equation of the $p$-adic open string for the scalar tachyon field”, Izv. Math., 69:3 (2005), 487–512 | DOI

[42] Kh. A. Khachatryan, “On the solubility of certain classes of non-linear integral equations in $p$-adic string theory”, Izv. Math., 82:2 (2018), 407–427 | DOI

[43] Kh. A. Khachatryan and H. S. Petrosyan, “On the qualitative properties of the solution of a nonlinear boundary value problem in the dynamic theory of $p$-adic strings”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 16:4 (2020), 423–436 (Russian) | DOI | MR

[44] Kh. A. Khachatryan, “Existence and uniqueness of solution of a certain boundary-value problem for a convolution integral equation with monotone non-linearity”, Izv. Math., 84:4 (2020), 807–815 | DOI

[45] H. S. Petrosyan and Kh. A. Khachatryan, “Uniqueness of the solution of a class of integral equations with sum-difference kernel and with convex nonlinearity on the positive half-line”, Math. Notes, 113:4 (2023), 512–524 | DOI

[46] M. H. Avetisyan, “On solvability of a nonlinear discrete system in the spread theory of infection”, Proc. Yerevan State Univ., 54:2 (2020), 87–95 | DOI | Zbl

[47] A. Kh. Khachatryan and Kh. A. Khachatryan, “On solvability of one infinite system of nonlinear functional equations in the theory of epidemics”, Eurasian Math. J., 11:2 (2020), 52–64 | DOI | MR | Zbl

[48] Kh. A. Khachatryan, “On some systems of nonlinear integral Hammerstein-type equations on the semiaxis”, Ukrainian Math. J., 62:4 (2010), 630–647 | DOI

[49] Kh. A. Khachatryan and H. S. Petrosyan, “On the solvability of a system of nonlinear integral equations with the Hammerstein–Stieltjes operator on the half-line”, Differ. Equ., 59:3 (2023), 383–391 | DOI

[50] G. G. Gevorkyan and N. B. Engibaryan, “New theorems for the renewal integral equation”, J. Contemp. Math. Anal., 32:1 (1997), 2–16

[51] A. N. Kolmogorov and S. V. Fomin, Introductory real analysis, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1970 | MR | Zbl

[52] G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, v. I, Grundlehren Math. Wiss., 19, Reihen. Integralrechnung. Funktionentheorie, 3. bericht. Aufl., Springer-Verlag, Berlin–New York, 1964 | DOI | MR | Zbl