Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2024_88_4_a5, author = {Kh. A. Khachatryan and H. S. Petrosyan}, title = {An iterative method for solving one class of non-linear integral equations}, journal = {Izvestiya. Mathematics }, pages = {760--793}, publisher = {mathdoc}, volume = {88}, number = {4}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a5/} }
TY - JOUR AU - Kh. A. Khachatryan AU - H. S. Petrosyan TI - An iterative method for solving one class of non-linear integral equations JO - Izvestiya. Mathematics PY - 2024 SP - 760 EP - 793 VL - 88 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a5/ LA - en ID - IM2_2024_88_4_a5 ER -
Kh. A. Khachatryan; H. S. Petrosyan. An iterative method for solving one class of non-linear integral equations. Izvestiya. Mathematics , Tome 88 (2024) no. 4, pp. 760-793. http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a5/
[1] I. Ya. Aref'eva, B. G. Dragovic, and I. V. Volovich, “Open and closed $p$-adic strings and quadratic extensions of number fields”, Phys. Lett. B, 212:3 (1988), 283–291 | DOI | MR
[2] V. S. Vladimirov and Ya. I. Volovich, “Nonlinear dynamics equation in $p$-adic string theory”, Theoret. and Math. Phys., 138:3 (2004), 297–309 | DOI
[3] V. S. Vladimirov, “Nonexistence of solutions of the $p$-adic strings”, Theoret. and Math. Phys., 174:2 (2013), 178–185 | DOI
[4] V. S. Vladimirov, “Nonlinear equations for $p$-adic open, closed, and open-closed strings”, Theoret. and Math. Phys., 149:3 (2006), 1604–1616 | DOI
[5] C. Atkinson and G. E. H. Reuter, “Deterministic epidemic waves”, Math. Proc. Cambridge Philos. Soc., 80:2 (1976), 315–330 | DOI | MR | Zbl
[6] O. Diekmann, “Thresholds and travelling waves for the geographical spread of infection”, J. Math. Biol., 6:2 (1978), 109–130 | DOI | MR | Zbl
[7] A. Kh. Khachatryan and Kh. A. Khachatryan, “On the solvability of some nonlinear integral equations in problems of epidemic spread”, Proc. Steklov Inst. Math., 306 (2019), 271–287 | DOI
[8] O. Diekmann and H. G. Kaper, “On the bounded solutions of a nonlinear convolution equation”, Nonlinear Anal., 2:6 (1978), 721–737 | DOI | MR | Zbl
[9] C. Cercignani, The Boltzmann equation and its applications, Appl. Math. Sci., 67, Springer-Verlag, New-York, 1988 | DOI | MR | Zbl
[10] C. Villani, “Cercignani's conjecture is sometimes true and always almost true”, Comm. Math. Phys., 234:3 (2003), 455–490 | DOI | MR | Zbl
[11] A. Kh. Khachatryan and Kh. A. Khachatryan, “Some problems concerning the solvability of the nonlinear stationary Boltzmann equation in the framework of the BGK model”, Trans. Moscow Math. Soc., 77 (2016), 87–106 | DOI | MR
[12] N. B. Engibaryan, “On a problem in nonlinear radiative transfer”, Astrophysics, 2:1 (1966), 12–14 | DOI
[13] N. B. Engibaryan, “A nonlinear problem of radiative transfer”, Astrophysics, 1:1 (1965), 158–159 | DOI
[14] W. Okrasiński, “On the existence and uniqueness of nonnegative solutions of a certain nonlinear convolution equation”, Ann. Polon. Math., 36:1 (1979), 61–72 | DOI | MR | Zbl
[15] W. Okrasiński, “Nonlinear Volterra equations and physical applications”, Extracta Math., 4:2 (1989), 51–80 | MR
[16] P. Urysohn, “Sur une classe d'équations intégrales non lineaires”, Mat. Sb., 31:2 (1923), 236–255
[17] A. Hammerstein, “Nichtlineare Integralgleichungen nebst Anwendungen”, Acta Math., 54:1 (1930), 117–176 | DOI | MR | Zbl
[18] M. A. Krasnosel'skiĭ, “Fixed points of cone-compressing or cone-extending operators”, Soviet Math. Dokl., 1 (1960), 1285–1288
[19] P. P. Zabreiko, R. I. Kachurovskii, and M. A. Krasnosel'skii, “On a fixed-point principle for operators in a Hilbert space”, Funct. Anal. Appl., 1:2 (1967), 168–169 | DOI
[20] F. E. Browder, “Nonlinear operators in Banach spaces”, Math. Ann., 162 (1965/1966), 280–283 | DOI | MR | Zbl
[21] F. E. Browder, “Fixed point theorems for nonlinear semicontractive mappings in Banach spaces”, Arch. Ration. Mech. Anal., 21 (1966), 259–269 | DOI | MR | Zbl
[22] F. E. Browder and C. P. Gupta, “Monotone operators and nonlinear integral equations of Hammerstein type”, Bull. Amer. Math. Soc., 75 (1969), 1347–1353 | DOI | MR | Zbl
[23] P. P. Zabreiko and A. I. Povolotskii, “Quasilinear operators and Hammerstein's equation”, Math. Notes, 12:4 (1972), 705–711 | DOI
[24] P. P. Zabreiko and E. I. Pustyl'nik, “On continuity and complete continuity of nonlinear integral operators in $L_p$ spaces”, Uspekhi Mat. Nauk, 19:2(116) (1964), 204–205 (Russian)
[25] M. A. Krasnosel'skiĭ, Positive solutions of operator equations, P. Noordhoff Ltd., Groningen, 1964 | MR | Zbl
[26] G. Emmanuele, “An existence theorem for Hammerstein integral equations”, Port. Math., 51:4 (1994), 607–611 | MR | Zbl
[27] H. Brezis and F. E. Browder, “Existence theorems for nonlinear integral equations of Hammerstein type”, Bull. Amer. Math. Soc., 81:1 (1975), 73–78 | DOI | MR | Zbl
[28] S. N. Askhabov, “Nonlinear integral equations with potential-type kernels on a segment”, J. Math. Sci. (N.Y.), 235:4 (2018), 375–391 | DOI
[29] H. Gajewski, K. Gröger, and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Math. Lehrbucher und Monogr., 38, Akademie-Verlag, Berlin, 1974 | MR | Zbl
[30] Kh. A. Khachatryan and H. S. Petrosyan, “On the solvability of a class of nonlinear Hammerstein–Stieltjes integral equations on the whole line”, Proc. Steklov Inst. Math., 308 (2020), 238–249 | DOI
[31] L. G. Arabadzhyan, “Solutions of certain integral equations of the Hammerstein type”, J. Contemp. Math. Anal., 32:1 (1997), 17–24
[32] Kh. A. Khachatryan and H. S. Petrosyan, “One-parameter families of positive solutions of some classes of nonlinear convolution type integral equations”, J. Math. Sci. (N.Y.), 231:2 (2018), 153–167 | DOI
[33] Kh. A. Khachatryan, “On a class of nonlinear integral equations with a noncompact operator”, J. Contemp. Math. Anal., 46:2 (2011), 89–100 | DOI
[34] Kh. A. Khachatryan, “One-parameter family of solutions for one class of Hammerstein nonlinear equations on a half-line”, Dokl. Math., 80:3 (2009), 872–876 | DOI
[35] Kh. A. Khachatryan, “Positive solubility of some classes of non-linear integral equations of Hammerstein type on the semi-axis and on the whole line”, Izv. Math., 79:2 (2015), 411–430 | DOI
[36] Kh. A. Khachatryan, “On a class of integral equations of Urysohn type with strong non-linearity”, Izv. Math., 76:1 (2012), 163–189 | DOI
[37] Kh. A. Khachatryan and H. S. Petrosyan, “On the construction of an integrable solution to one class of nonlinear integral equations of Hammerstein-Nemytskii type on the whole axis”, Trudy Inst. Mat. i Mekh. UrO RAN, 26, no. 2, 2020, 278–287 | DOI | MR
[38] H. S. Petrosyan, “On solution of a class of Hammerstein type nonlinear integral equations on the positive half-line in the critical case”, Proc. Yerevan State Univ., 48:3(235) (2014), 31–39 | Zbl
[39] T. Sardaryan, “Integrable solution of one Hammerstein–Volterra type nonlinear integral equation on semi-axis”, Vestnik RAU. Fiz.-Matem. Nauki, 2015, no. 1, 5–16 (Russian)
[40] V. S. Vladimirov, “Solutions of $p$-adic string equations”, Theoret. and Math. Phys., 167:2 (2011), 539–546 | DOI
[41] V. S. Vladimirov, “The equation of the $p$-adic open string for the scalar tachyon field”, Izv. Math., 69:3 (2005), 487–512 | DOI
[42] Kh. A. Khachatryan, “On the solubility of certain classes of non-linear integral equations in $p$-adic string theory”, Izv. Math., 82:2 (2018), 407–427 | DOI
[43] Kh. A. Khachatryan and H. S. Petrosyan, “On the qualitative properties of the solution of a nonlinear boundary value problem in the dynamic theory of $p$-adic strings”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 16:4 (2020), 423–436 (Russian) | DOI | MR
[44] Kh. A. Khachatryan, “Existence and uniqueness of solution of a certain boundary-value problem for a convolution integral equation with monotone non-linearity”, Izv. Math., 84:4 (2020), 807–815 | DOI
[45] H. S. Petrosyan and Kh. A. Khachatryan, “Uniqueness of the solution of a class of integral equations with sum-difference kernel and with convex nonlinearity on the positive half-line”, Math. Notes, 113:4 (2023), 512–524 | DOI
[46] M. H. Avetisyan, “On solvability of a nonlinear discrete system in the spread theory of infection”, Proc. Yerevan State Univ., 54:2 (2020), 87–95 | DOI | Zbl
[47] A. Kh. Khachatryan and Kh. A. Khachatryan, “On solvability of one infinite system of nonlinear functional equations in the theory of epidemics”, Eurasian Math. J., 11:2 (2020), 52–64 | DOI | MR | Zbl
[48] Kh. A. Khachatryan, “On some systems of nonlinear integral Hammerstein-type equations on the semiaxis”, Ukrainian Math. J., 62:4 (2010), 630–647 | DOI
[49] Kh. A. Khachatryan and H. S. Petrosyan, “On the solvability of a system of nonlinear integral equations with the Hammerstein–Stieltjes operator on the half-line”, Differ. Equ., 59:3 (2023), 383–391 | DOI
[50] G. G. Gevorkyan and N. B. Engibaryan, “New theorems for the renewal integral equation”, J. Contemp. Math. Anal., 32:1 (1997), 2–16
[51] A. N. Kolmogorov and S. V. Fomin, Introductory real analysis, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1970 | MR | Zbl
[52] G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, v. I, Grundlehren Math. Wiss., 19, Reihen. Integralrechnung. Funktionentheorie, 3. bericht. Aufl., Springer-Verlag, Berlin–New York, 1964 | DOI | MR | Zbl