Homogenization of elliptic and parabolic equations with~periodic coefficients in a~bounded domain under the Neumann condition
Izvestiya. Mathematics , Tome 88 (2024) no. 4, pp. 678-759

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal{O}\subset\mathbb{R}^d$ be a bounded domain of class $C^{1,1}$. In $L_2(\mathcal{O};\mathbb{C}^n)$, we consider a selfadjoint matrix elliptic second-order differential operator $B_{N,\varepsilon}$, $0\varepsilon\leqslant1$, with the Neumann boundary condition. The principal part of this operator is given in a factorized form. The operator involves first-order and zero-order terms. The coefficients of $B_{N,\varepsilon}$ are periodic and depend on $\mathbf{x}/\varepsilon$. We study the generalized resolvent $(B_{N,\varepsilon}-\zeta Q_0(\,{\cdot}\,/\varepsilon))^{-1}$, where $Q_0$ is a periodic bounded and positive definite matrix-valued function, and $\zeta$ is a complex-valued parameter. We obtain approximations for the generalized resolvent in the operator norm on $L_2(\mathcal{O};\mathbb{C}^n)$ and in the norm of operators acting from $L_2(\mathcal{O};\mathbb{C}^n)$ to the Sobolev space $H^1(\mathcal{O};\mathbb{C}^n)$ with two-parametric error estimates (with respect to $\varepsilon$ and $\zeta$). The results are applied to study the behaviour of the solutions of the initial boundary value problem with the Neumann condition for the parabolic equation $Q_0(\mathbf{x}/\varepsilon) \, \partial_t \mathbf{u}_\varepsilon(\mathbf{x},t) = -(B_{N,\varepsilon} \mathbf{u}_\varepsilon)(\mathbf{x},t)$ in a cylinder $\mathcal{O} \times (0,T)$, where $0$.
Keywords: periodic differential operators, elliptic systems, parabolic systems, homogenization, operator error estimates.
@article{IM2_2024_88_4_a4,
     author = {T. A. Suslina},
     title = {Homogenization of elliptic and parabolic equations with~periodic coefficients in a~bounded domain under the {Neumann} condition},
     journal = {Izvestiya. Mathematics },
     pages = {678--759},
     publisher = {mathdoc},
     volume = {88},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a4/}
}
TY  - JOUR
AU  - T. A. Suslina
TI  - Homogenization of elliptic and parabolic equations with~periodic coefficients in a~bounded domain under the Neumann condition
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 678
EP  - 759
VL  - 88
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a4/
LA  - en
ID  - IM2_2024_88_4_a4
ER  - 
%0 Journal Article
%A T. A. Suslina
%T Homogenization of elliptic and parabolic equations with~periodic coefficients in a~bounded domain under the Neumann condition
%J Izvestiya. Mathematics 
%D 2024
%P 678-759
%V 88
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a4/
%G en
%F IM2_2024_88_4_a4
T. A. Suslina. Homogenization of elliptic and parabolic equations with~periodic coefficients in a~bounded domain under the Neumann condition. Izvestiya. Mathematics , Tome 88 (2024) no. 4, pp. 678-759. http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a4/